12 resultados para PHASEOLEAE
Resumo:
Pollen transport to a receptive stigma can be facilitated through different pollinators, which submits the pollen to different selection pressures. This study aimed to associate pollen and stigma morphology with zoophily in species of the tribe Phaseoleae. Species of the genera Erythrina, Macroptilium and Mucuna with different pollinators were chosen. Pollen grains and stigmas were examined under light microscopy (anatomy), scanning electronic microscopy (surface analyses) and transmission electronic microscopy (ultrastructure). The three genera differ in terms of pollen wall ornamentation, pollen size, pollen aperture, thickness of the pollen wall, amount of pollenkitt, pollen hydration status and dominant reserves within the pollen grain, while species within each genus are very similar in most studied characteristics. Most of these features lack relationships to pollinator type, especially in Erythrina and Mucuna. Pollen reserves are discussed on a broad scale, according to the occurrence of protein in the pollen of invertebrate- or vertebrate-pollinated species. Some pollen characteristics are more associated to semi-dry stigma requirements. This apical, compact, cuticularised and secretory stigma occurs in all species investigated. We conclude that data on pollen and stigma structure should be included together with those on floral morphology and pollinator behaviour for the establishment of functional pollination classes.
Resumo:
O gênero Periandra Mart. ex Benth. é constituído por seis espécies, essencialmente brasileiras, distribuídas principalmente em campos e cerrados. Nesta revisão o gênero foi dividido em dois subgêneros: Periandra subg. Periandra e Periandra subg. Coccinea Funch & Barroso. A proposta destes subgêneros foi baseada em caracteres macromorfológicos, abordados neste trabalho, e polínicos, tratados anteriormente. Nenhuma das variedades anteriormente descritas para P. mediterranea foi aceita. Uma espécie, P. berteriana, foi considerada duvidosa.
Resumo:
Dados morfológicos referentes às fases juvenis das plantas são tão importantes quanto escassos na literatura. Neste trabalho, foram estudadas as plântulas e plantas jovens de Erythrina speciosa (Phaseoleae), Holocalyx balansae e Sophora tomentosa (Sophoreae), Swartzia langsdorffii (Swartzieae), Lonchocarpus muehlbergianus e Platycyamus regnellii (Tephrosieae), como parte de um amplo projeto com leguminosas arbóreas, que objetivou descrever a morfologia das fases juvenis, com vistas à identificação das espécies, fornecendo subsídios para trabalhos taxonômicos, filogenéticos e ecológicos. Erythrina speciosa apresentou plântula epígeo-carnosa, formando somente dois eofilos. As espécies de Sophoreae e Swartzieae formaram plântulas hipógeas, sendo constituídos de cinco a sete eofilos em Holocalyx balansae, de seis a 15 em Sophora tomentosa e de sete a 10 em Swartzia langsdorffii. Em Tephrosieae, Lonchocarpus muehlbergianus produziu plântula hipógea e constituiu de oito a 10 eofilos e Platycyamus regnellii formou plântulas epígeo-carnosas e apenas dois eofilos. As plântulas e plantas jovens de Erythrina speciosa e de Platycyamus regnellii são similares, sendo distinguidas somente pela presença de espinhos e nectários extra-florais na primeira. Com relação à filotaxia, as espécies de Sophoreae e Swartzieae apresentaram somente nós alternos, enquanto que, em Phaseoleae e Tephrosieae, a filotaxia do primeiro nó eofilar foi oposta, passando a alterna nos nós subsequentes. Foram encontrados nódulos radiculares em todas as espécies, exceto em Holocalyx balansae e em Platycyamus regnellii.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Inflorescence and floral development of two tropical legume trees, Dahlstedtia pinnata and Dahlstedlia pentaphylla, occurring in the Atlantic Forest of south-eastern and southern Brazil, were investigated and compared with other papilionoids. Few studies have been made of floral development in tribe Millettieae, and this paper is intended to fill that gap in our knowledge. Dahlstedtia species have an unusual inflorescence type among legumes, the pseudoraceme, which comprises axillary units of three or more flowers, each with a subtending bract. Each flower exhibits a pair of opposite bractcoles. The order of flower initiation is acropetal; inception of the floral organs is as follows: sepals (5), petals (5), carpel (1) plus outer stamens (5) and finally inner stamens (5). Organ initiation in sepal, petal and inner stamen whorls is unidirectional; the carpel cleft is adaxial. The vexillum originates from a tubular-shaped primordium in mid-development and is larger than other petals at maturity, covering the keels. The filament tube develops later after initiation of inner-stamen primordia. Floral development in Dahlstedtia is almost always similar to other papilionoids, especially species of Phaseoleae and Sophoreae. But one important difference is the precocious ovule initiation (open carpel with ovules) in Dahlstedtia, the third citation of this phenomenon for papilionoids. No suppression, organ loss or anomalies occur in the order of primordia initiation or structure. Infra-generic differences in the first stages of ontogeny are rare; however, different species of Dahlstedtia are distinguished by the differing distribution pattern of secretory cavities in the flower. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Inflorescence and floral development of three species of Indigofera (Leguminosae-Papilionoideae), I. lespedezioides, I. spicata, and I. suffruticosa, were investigated and compared with that of other papilionoid groups, especially with members of the recently circumscribed Millettioid clade, which was merged as sister to Indigofereae in a recent cladistic analysis. Although Indigofera is a genus of special interest, because of its great richness in species and its economic importance, few studies have been made of floral development in the genus or in Indigofereae as a whole. Flower buds and inflorescences were analysed at several stages of development in the three species. Our results confirmed that Indigofera species bear a usual inflorescence type among legumes, the raceme, which comprises flowers initiated in acropetal succession, each with a subtending bract and no bracteoles initiated. The inception of the floral organs is as follows: sepals (5), petals (5), carpel (1), outer stamens (5), and, finally, inner stamens (5). Organ initiation in the sepal, petal, and both stamen whorls is unidirectional, from the abaxial side; the carpel cleft is adaxial. The vexillum is larger than other petals at maturity, covering the keels, which are fused edge-to-edge. Nine filaments are fused to form an adaxially open sheath, and the adaxial stamen of the inner whorl remains free (diadelphous androecium) in the mid-stage of development. Most of the infra-generic differences occurred in the later stages of development. Data on floral development in Indigofera obtained here were also compared with those from other members of Papilionoideae. This comparison showed that the early expression of zygomorphy is shared with other members of the Millettioid clade but is rarely found in other papilionoids, corresponding to a hypothetically morphological synapomorphy in the pair Indigoferae plus millettioids.
Resumo:
In this paper of the catalogue of south brazilian arboreal pollen grains, the autor deals with the Papilionatae. The Mimosoideae and Caesalpinioideae are yet in preparation, so that a discussion of the three subfamilies (or families) is not possible. In relation with the systematical subdivision of the Papilionatae, we found a large correspondence with the morphology of the present pollen grains. The group of Phaseoleae contains the genera Mucuna, Erythrina and Dioclea; the grains of the studied species are very different one from another; the first of the genera possesses very volumous grains, with three colpori and a reticulated superficies; the second has three-porated pollen grains with a large reticulated superficies, and the third, Dioclea, is yet different; it possesses oblated grains, each three-colporated, with a thick sexine and a psilated superficies. So, we can say, that Phaseoleae is a erypalynous group. Dalbergieae, with the genera: Andira, Dalbergia, Lonchocarpus, Machaerium, Platymiscium and Pterocarpus (and Dahlstedtia, the only exception), has very uniform pollen grains, and may be considered stenopalynous. It is not possible to include the genus Dahlstedtia into this group. A little exception is represented by Pterocarpus violaceus, because of the reticulated sexine of its grains, while the others, also three-colporated, possess a tectate-reticulated sexine. The genera Myrocarpus and Ormosia, from Sophoreae, are very more similar to the Dalbergieae as to any other genus of the Phaseoleae.
Resumo:
The carbohydrate-binding specificity of lectins from the seeds of Canavalia maritima and Dioclea grandiflora was studied by hapten-inhibition of haemagglutination using various sugars and sugar derivatives as inhibitors, including N-acetylneuraminic acid and N-acetylmuramic acid. Despite some discrepancies, both lectins exhibited a very similar carbohydrate-binding specificity as previously reported for other lectins from Diocleinae (tribe Phaseoleae, sub-tribe Diocleinae). Accordingly, both lectins exhibited almost identical hydropathic profiles and their three-dimensional models built up from the atomic coordinates of ConA looked very similar. However, docking experiments of glucose and mannose in their monosaccharide-binding sites, by comparison with the ConA-mannose complex used as a model, revealed conformational changes in side chains of the amino acid residues involved in the binding of monosaccharides. These results fully agree with crystallographic data showing that binding of specific ligands to ConA requires conformational chances of its monosaccharide-binding site.
Resumo:
Pseudomonas syringae pv. phaseolicola causes halo blight of the common bean, Phaseolus vulgaris, worldwide and remains difficult to control. Races of the pathogen cause either disease symptoms or a resistant hypersensitive response on a series of differentially reacting bean cultivars. The molecular genetics of the interaction between P. syringae pv. phaseolicola and bean, and the evolution of bacterial virulence, have been investigated in depth and this research has led to important discoveries in the field of plant-microbe interactions. In this review, we discuss several of the areas of study that chart the rise of P. syringae pv. phaseolicola from a common pathogen of bean plants to a molecular plant-pathogen supermodel bacterium. Taxonomy: Bacteria; Proteobacteria, gamma subdivision; order Pseudomonadales; family Pseudomonadaceae; genus Pseudomonas; species Pseudomonas syringae; Genomospecies 2; pathogenic variety phaseolicola. Microbiological properties: Gram-negative, aerobic, motile, rod-shaped, 1.5 µm long, 0.7-1.2 µm in diameter, at least one polar flagellum, optimal temperatures for growth of 25-30 °C, oxidase negative, arginine dihydrolase negative, levan positive and elicits the hypersensitive response on tobacco. Host range: Major bacterial disease of common bean (Phaseolus vulgaris) in temperate regions and above medium altitudes in the tropics. Natural infections have been recorded on several other legume species, including all members of the tribe Phaseoleae with the exception of Desmodium spp. and Pisum sativum. Disease symptoms: Water-soaked lesions on leaves, pods, stems or petioles, that quickly develop greenish-yellow haloes on leaves at temperatures of less than 23 °C. Infected seeds may be symptomless, or have wrinkled or buttery-yellow patches on the seed coat. Seedling infection is recognized by general chlorosis, stunting and distortion of growth. Epidemiology: Seed borne and disseminated from exudation by water-splash and wind occurring during rainfall. Bacteria invade through wounds and natural openings (notably stomata). Weedy and cultivated alternative hosts may also harbour the bacterium. Disease control: Some measure of control is achieved with copper formulations and streptomycin. Pathogen-free seed and resistant cultivars are recommended. Useful websites: Pseudomonas-plant interaction http://www.pseudomonas-syringae.org/; PseudoDB http://xbase.bham.ac.uk/pseudodb/; Plant Associated and Environmental Microbes Database (PAMDB) http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl; PseudoMLSA Database http://www.uib.es/microbiologiaBD/Welcome.html.
Resumo:
Leguminosae is the third largest family of angiosperms with about 19.325 species and 727 genera, and it is pantropically distributed. Papilionoideae is the most diverse of the three legume subfamilies, with around 13.800 species (71%), 478 genera, and 28 tribes. Papilionoid legumes include herbs, shrubs, lianas or trees with pinnate, trifoliolate, unifoliolate or simple leaves, flowers frequently papilionate with descending imbricate petal aestivation, the petals highly differentiated into standard, keel, and wings, androecium usually diplostemous, and seeds without pleurogram, with conspicuous hilum, and the embryo radicle usually curved. The current study aims to carry out a taxonomic account of the Papilionoideae from Atlantic Forest remnants in Rio Grande do Norte, Brazil, across the herbaria data surveys, collections of field samples and morphological analysis of the collected specimens and/or herbaria materials. Identification key, descriptions, diagnostic characters, illustrations, and geographic distribution of the 68 species and 32 genera within the following tribes Phaseoleae (11 genera/24 species), Dalbergieae (9/20), Swartzieae (3/3), Millettieae (2/4), Sophoreae (2/2), Abreae (1/1), Crotalarieae (1/3), Desmodieae (1/7), Indigofereae (1/3), and Sesbanieae (1/1). The most species-rich genera were Desmodium Desv. (7 species), Centrosema (DC.) Benth. (5), Stylosanthes Sw. (5), Aeschynomene L. (4) and Macroptilium (Benth.) Urb. (4). Concerning to the habit, the herbaceous and shrubby has predominated with 60% (41 spp.), following by the vine and lianas with 28% (19 spp.) and the woody with only 12% (8 spp.). Thirty two species and the following genera are newly recorded for the flora of Rio Grande do Norte: Chaetocalyx, Cochliasanthus, Crotalaria, Galactia, Geoffroea, Macroptilium, Rhynchosia, Swartzia, Trischidium, and Vigna
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)