981 resultados para PHARMACEUTICAL CO-CRYSTALS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carboxylic acids, amides and imides are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional functional group can provide sites for new intermolecular interactions and, potentially, promote supramolecular growth into a co-crystal, benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic imides. The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co- crystals or eutectics for the studied carboxylic acid/imide combinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sinapic acid (SA) is a nutraceutical with known anti-oxidant, anti-microbial, anti-inflammatory, anti-cancer, and anti-anxiety properties. Novel co-crystals of SA were prepared with co-formers belonging to the category of GRAS [isonicotinic acid (INC), nicotinamide (NIA)], non-GRAS [4-pyridinecarbonitrile (PYC)], and active pharmaceutical ingredients (APIs) [6-propyl-2-thiouracil (PTU)] list of compounds. Structural study based on the X-ray crystal structures revealed the intermolecular hydrogen-bonded interactions and molecular packing. The crystal structure of sinapic acid shows the anticipated acid-acid homodimer along with discrete hydrogen bonds between the acid carbonyl and the phenolic moiety. The robust acid-acid homodimer appears to be very stable and is retained in the structures of two co-crystals (SA[middle dot]NIA and SA[middle dot]PYC). In these cases, co-crystallization occurs via intermolecular phenol O-H[three dots, centered]Naromatic hydrogen bonds between the co-formers. In the SA[middle dot]PTU[middle dot]2MeCN co-crystal the acid-acid homodimer gives way to the anticipated acid-amide heterodimer, with the phenolic moiety of SA hydrogen-bonded to acetonitrile. Attempts at obtaining the desolvated co-crystal led to lattice breakdown, thus highlighting the importance of acetonitrile in the formation of the co-crystal. Among the co-crystals examined, SA[middle dot]INC (5 weeks), SA[middle dot]NIA (8 weeks) and SA[middle dot]PYC (5 weeks) were found to be stable under accelerated humidity conditions (40 [degree]C, 75% RH), whereas SA[middle dot]PTU[middle dot]2MeCN decomposed after one week into individual components due to solvent loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of active pharmaceutical ingredients (APIs) into multicomponent solid forms (such as salts and co-crystals) or liquid forms (such as ionic liquids (ILs) or deep eutectic mixtures) is important in optimizing the efficacy and delivery of APIs. However, there is a current debate regarding the classification of these multicomponent systems based on their ionicity which could interfere with their consideration in important applications. Multicomponent systems of intermediate ionicity can show a combination of properties, leading to behavior that is neither strictly typical of either purely ionic or purely neutral compounds, nor easily described as intermediate between the two. In this perspective, we attempt to illustrate the problems in classifying multicomponent APIs based on one of two categories by discussing selected literature regarding solid and liquid multicomponent APIs and presenting the crystal structures of some relevant systems as case studies. It is clear that a focus on restrictive nomenclature carries with it the risk that a thorough examination of the physicochemical properties of the compounds will be overlooked.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scope of my research project is to produce and characterize new crystalline forms of organic compounds, focusing the attention on co-crystals and then transferring these notions on APIs to produce co-crystals of potential interest in the pharmaceutical field. In the first part of this work co-crystallization experiments were performed using as building blocks the family of aliphatic dicarboxylic acids HOOC-(CH2)n-COOH, with n= 2-8. This class of compounds has always been an object of study because it is characterized by an interesting phenomenon of alternation of melting points: the acids with an even number of carbon atoms show a melting point higher than those with an odd one. The acids were co-crystallized with four dipyridyl molecules (formed by two pyridine rings with a different number of bridging carbon atoms) through the formation of intermolecular interactions N•••(H)O. The bases used were: 4,4’-bipyridine (BPY), 1,2-bis(4-pyridyl)ethane (BPA), 1,2-(di-4-pyridyl)ethylene (BPE) and 1,2-bis(4-pyridyl)propane (BPP). The co-crystals obtained by solution synthesis were characterized by different solid-state techniques to determine the structure and to see how the melting points in co-crystals change. In the second part of this study we tried to obtain new crystal forms of compounds of pharmaceutical interest. The APIs studied are: O-desmethylvenlafaxine, Lidocaine, Nalidixic Acid and Sulfadiazine. Each API was subjected to Polymorph Screening and Salt/Co-crystal Screening experiments to identify new crystal forms characterized by different properties. In a typical Salt/Co-crystal Screening the sample was made to react with a co-former (solid or liquid) through different methods: crystallization by solution, grinding, kneading and solid-gas reactions. The new crystal forms obtained were characterized by different solid state techniques (X-ray single crystal diffraction, X-ray powder diffraction, Differential Scanning Calorimetry, Thermogravimetric Analysis, Evolved gas analysis, FT-IR – ATR, Solid State N.M.R).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This doctorate was funded by the Regione Emilia Romagna, within a Spinner PhD project coordinated by the University of Parma, and involving the universities of Bologna, Ferrara and Modena. The aim of the project was: - Production of polymorphs, solvates, hydrates and co-crystals of active pharmaceutical ingredients (APIs) and agrochemicals with green chemistry methods; - Optimization of molecular and crystalline forms of APIs and pesticides in relation to activity, bioavailability and patentability. In the last decades, a growing interest in the solid-state properties of drugs in addition to their solution chemistry has blossomed. The achievement of the desired and/or the more stable polymorph during the production process can be a challenge for the industry. The study of crystalline forms could be a valuable step to produce new polymorphs and/or co-crystals with better physical-chemical properties such as solubility, permeability, thermal stability, habit, bulk density, compressibility, friability, hygroscopicity and dissolution rate in order to have potential industrial applications. Selected APIs (active pharmaceutical ingredients) were studied and their relationship between crystal structure and properties investigated, both in the solid state and in solution. Polymorph screening and synthesis of solvates and molecular/ionic co-crystals were performed according to green chemistry principles. Part of this project was developed in collaboration with chemical/pharmaceutical companies such as BASF (Germany) and UCB (Belgium). We focused on on the optimization of conditions and parameters of crystallization processes (additives, concentration, temperature), and on the synthesis and characterization of ionic co-crystals. Moreover, during a four-months research period in the laboratories of Professor Nair Rodriguez-Hormedo (University of Michigan), the stability in aqueous solution at the equilibrium of ionic co-crystals (ICCs) of the API piracetam was investigated, to understand the relationship between their solid-state and solution properties, in view of future design of new crystalline drugs with predefined solid and solution properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An ongoing challenge in chemistry and crystal engineering is the synthesis of functional materials with predictable structures and customisable properties. This may be achieved by crystallising mixtures of different compounds. Co-crystals formed through this method have predictable structures and their properties may be tuned by varying the ratio of the compounds in the crystallising solution. This thesis examines single crystals formed by the co-crystallisation of metal complexes that have similar structures but different physical or chemical properties. A variety of new compounds with interesting properties were prepared, characterised and their significance in the context of crystal engineering was explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we report the crystal structures of five halogen bonded co-crystals comprising quaternary ammonium cations, halide anions (Cl– and Br–), and one of either 1,2-, 1,3-, or 1,4-diiodotetrafluorobenzene (DITFB). Three of the co-crystals are chemical isomers: 1,4-DITFB[TEA-CH2Cl]Cl, 1,2-DITFB[TEA-CH2Cl]Cl, and 1,3-DITFB[TEA-CH2Cl]Cl (where TEA-CH2Cl is chloromethyltriethylammonium ion). In each structure, the chloride anions link DITFB molecules through halogen bonds to produce 1D chains propagating with (a) linear topology in the structure containing 1,4-DITFB, (b) zigzag topology with 60° angle of propagation in that containing 1,2-DITFB, and (c) 120° angle of propagation with 1,3-DITFB. While the individual chains have highly distinctive and different topologies, they combine through π-stacking of the DITFB molecules to produce remarkably similar overall arrangements of molecules. Structures of 1,4-DITFB[TEA-CH2Br]Br and 1,3-DITFB[TEA-CH2Br]Br are also reported and are isomorphous with their chloro/chloride analogues, further illustrating the robustness of the overall supramolecular architecture. The usual approach to crystal engineering is to make structural changes to molecular components to effect specific changes to the resulting crystal structure. The results reported herein encourage pursuit of a somewhat different approach to crystal engineering. That is, to investigate the possibilities for engineering the same overall arrangement of molecules in crystals while employing molecular components that aggregate with entirely different supramolecular connectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co-crystals of 4,4'-bipyridine and 4-hydroxybenzoic acid (1 : 2) show synthon polymorphism with the former being more stable. A 2 : 1 co-crystal is pseudopolymorphic within the same structural landscape with the structural roles of the two bipyridine N-atoms being distinct, as evidenced by mimicry by 4-phenylpyridine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extensive search of the structural landscape of orcinol, 5-methyl-1,3-dihydroxybenzene, has been carried out with high throughput techniques. Polymorphs, pseudopolymorphs (solvates), and co-crystals are described. Several packing modes driven by O-H center dot center dot center dot N hydrogen bonds were identified for the orcinol N-base co-crystals and their hydrates. In these several structural variations, the OH group conformations in the orcinol molecule were found to depend on the choice of co-formers and the crystallization conditions employed. The structural landscape of a molecule is properly described by a sufficiently large number of related crystal structures, and high throughput crystallization followed by rapid structure determinations enables one to access these structures efficiently. Any understanding of this landscape would enable the crystal engineer to reasonably anticipate crystal structures of benzene-1,3-diol co-crystals with N-bases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two drug-drug co-crystals of the anti-tuberculosis drugs isoniazid (INH), pyrazinamide (PYR) and 4-aminosalicylic acid (PAS) are reported. The first is the 1 : 1 molecular complex of INH and PAS. The second is the monohydrate of the 1 : 1 complex of PYR and PAS. The crystal structures of both co-crystals are characterized by a number of hydrogen bonded synthons. Hydrogen bonding of the COOH center dot center dot center dot N-pyridine type is found in both cases. In the INH : PAS co-crystal, there are two symmetry independent COOH center dot center dot center dot center dot N-pyridine hydrogen bonds. In one of these, the H-atom is located on the carboxylic group and is indicative of a co-crystal. In the second case, partial proton transfer occurs across the hydrogen bond, and the extent of proton transfer depends on the temperature. This is more indicative of a salt. Drug-drug co-crystals may have some bearing in the treatment of tuberculosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IR spectroscopy has been widely employed to distinguish between different crystal forms such as polymorphs, clathrates, hydrates and co-crystals. IR has been used to monitor co-crystal formation and single synthon detection. In this work, we have developed a strategy to identify multiple supramolecular synthons in polymorphs and co-crystals with this technique. The identification of multiple synthons in co-crystals with IR is difficult for several reasons. In this paper, a four step method involving well assigned IR spectral markers that correspond to bonds in a synthon is used. IR spectra of three forms of the co-crystal system, 4-hydroxybenzoic acid: 4,4'-bipyridine (2 : 1), show clear differences that may be attributed to differences in the synthon combinations existing in the forms (synthon polymorphism). These differences were picked out from the three IR spectra and the bands analysed and assigned to synthons. Our method first identifies IR marker bands corresponding to (covalent) bonds in known/model crystals and then the markers are mapped in known co-crystals having single synthons. Thereafter, the IR markers are queried in known co-crystals with multiple synthons. Finally they are queried in unknown co-crystals with multiple synthons. In the last part of the study, the N-H stretching absorptions of primary amides that crystallize with the amide dimers linked in a ladder like chain show two specific absorptions which are used as marker absorptions and all variations of this band structure have been used to provide details on the environment around the dimer. The extended dimer can accordingly be easily distinguished from the isolated dimer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrochlorothiazide (HCT), C7H8ClN3O4S2, is a diuretic BCS (Biopharmaceutics Classification System) class IV drug which has primary and secondary sulfonamide groups. To modify the aqueous solubility of the drug, co-crystals with biologically safe co-formers were screened. Multi-component molecular crystals of HCT were prepared with nicotinic acid, nicotinamide, succinamide, p-aminobenzoic acid, resorcinol and pyrogallol using liquid-assisted grinding. The co-crystals were characterized by FT-IR spectroscopy, powder X-ray diffraction (PXRD) and differential scanning calorimetry. Single crystal structures were obtained for four of them. The N-H center dot center dot center dot O sulfonamide catemer synthons found in the stable polymorph of pure HCT are replaced in the co-crystals by drug-co-former heterosynthons. Isostructural co-crystals with nicotinic acid and nicotinamide are devoid of the common sulfonamide dimer/catemer synthons. Solubility and stability experiments were carried out for the co-crystals in water (neutral pH) under ambient conditions. Among the six binary systems, the co-crystal with p-aminobenzoic acid showed a sixfold increase in solubility compared with pure HCT, and stability up to 24 h in an aqueous medium. The co-crystals with nicotinamide, resorcinol and pyrogallol showed only a 1.5-2-fold increase in solubility and transformed to HCT within 1 h of the dissolution experiment. An inverse correlation is observed between the melting points of the co-crystals and their solubilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three ternary co-crystals of the title compound are reported. The design strategy hinges on the identification of a robust synthon with O-H center dot center dot center dot N hydrogen bonds in a binary co-crystal. Construction of this module allows the tuning of pi center dot center dot center dot pi stacking interactions and weak hydrogen bonds to incorporate the third component into the crystal structure. Screening of various co-formers showed that a delicate balance of electrostatics is required for stacking to favor the formation of ternaries. A C-H center dot center dot center dot N hydrogen-bonded motif was also found to occur repetitively in the ternary co-crystals. The directional nature of weak hydrogen bonds allows them to be used effectively in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystal engineering principles were used to design three new co-crystals of paracetamol. A variety of potential cocrystal formers were initially identified from a search of the Cambridge Structural Database for molecules with complementary hydrogen-bond forming functionalities. Subsequent screening by powder X-ray diffraction of the products of the reaction of this library of molecules with paracetamol led to the discovery of new binary crystalline phases of paracetamol with trans-1,4- diaminocyclohexane (1); trans-1,4-di(4-pyridyl)ethylene (2); and 1,2-bis(4-pyridyl)ethane (3). The co-crystals were characterized by IR spectroscopy, differential scanning calorimetry, and 1H NMR spectroscopy. Single crystal X-ray structure analysis reveals that in all three co-crystals the co-crystal formers (CCF) are hydrogen bonded to the paracetamol molecules through O−H···N interactions. In co-crystals (1) and (2) the CCFs are interleaved between the chains of paracetamol molecules, while in co-crystal (3) there is an additional N−H···N hydrogen bond between the two components. A hierarchy of hydrogen bond formation is observed in which the best donor in the system, the phenolic O−H group of paracetamol, is preferentially hydrogen bonded to the best acceptor, the basic nitrogen atom of the co-crystal former. The geometric aspects of the hydrogen bonds in co-crystals 1−3 are discussed in terms of their electrostatic and charge-transfer components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consideration of the geometrical features of the functional groups present in furosemide has enabled synthesis of a series of ternary co-crystals with predictable structural features, containing a robust asymmetric two-dimensional network.