1000 resultados para PEROXIREDOXIN-I


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Plasmablastic lymphoma (PBL) and multiple myeloma (MM) are B cell-derived malignancies that share many morphologic and immunophenotypic traits, making the differential diagnosis particularly complicated. We have recently demonstrated that peroxiredoxin I (PrdxI) is expressed in plasma cells but not in B lymphocytes, suggesting that its expression is development-associated. AIM: To analyze PrdxI expression in PBL and in MM in order to study its utilization as an additional diagnostic molecular tool. METHODS AND RESULTS: Eight cases of PBL and nine of MM were studied by immunohistochemistry. We have demonstrated that PrdxI expression is closely connected with the immunoglobulin production capacity of the cells, which means high in MM, but absent in PBL cases, except one, wherein few cells were stained. CONCLUSIONS: We hypothesize PrdxI as a component of the unfolded protein response (UPR), an adaptive pathway essential for plasma cell differentiation. As we have not detected immunoglobulin in our PBL cases, we suggest that UPR was not activated in the cells, accounting for the impediment of the developmental process, and for the inhibition of PrdxI expression observed. PrdxI could be considered an additional plasma cell functional marker and could also be speculated as a therapeutic target in the treatment of MM. Oral Diseases (2008) 14, 741-746

Relevância:

60.00% 60.00%

Publicador:

Resumo:

P>Mucoepidermoid carcinoma (MEC), the most common primary salivary malignancy, shows great variability in clinical behaviour, thus demanding investigation to identify of prognostic markers. Since Warburg`s studies, unrestricted cell growth during tumorigenesis has been linked to altered metabolism, implying hypoxic stimulation of glycolysis and diminished contribution of mitochondrial oxidative phosphorylation to cellular ATP supply. Hypothesizing that the study of MEC metabolic status could lead to the discovery of prognostic markers, we investigated by immunohistochemistry the expression of glucose transporter 1 (Glut-1), mitochondrial antigen and peroxiredoxin I (Prx I) in samples of MEC from different histological grades. Our results showed that mitochondrial antigen and Prx I were expressed in the majority of the MEC cases independent of the histological grade. In contrast Glut-1 expression increased significantly as the tumours became more aggressive. These results suggested that oxidative phosphorylation may contribute to ATP supply in all stages of MEC progression, and that the relative contribution of glycolysis over mitochondria for cellular ATP supply increases during MEC progression, favouring growth under low oxygen concentration. In addition, the observed high Prx I protein levels could provide protection to tumour cells against reactive oxygen species generated as a consequence of mitochondrial function and hypoxia-reoxygenation cycling. Altogether our findings suggest that upregulation of Glut-1 and Prx I constitute successful adaptive strategies of MEC cells conferring a growth advantage over normal salivary gland cells in the unstable oxygenation tumour environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CD36 is an important scavenger receptor mediating uptake of oxidized low- density lipoproteins ( oxLDLs) and plays a key role in foam cell formation and the pathogenesis of atherosclerosis. We report the first evidence that the transcription factor Nrf2 is expressed in vascular smooth muscle cells, and demonstrate that oxLDLs cause nuclear accumulation of Nrf2 in murine macrophages, resulting in the activation of genes encoding CD36 and the stress proteins A170, heme oxygenase- 1 ( HO- 1), and peroxiredoxin I ( Prx I). 4- Hydroxy- 2- nonenal ( HNE), derived from lipid peroxidation, was one of the most effective activators of Nrf2. Using Nrf2- deficient macrophages, we established that Nrf2 partially regulates CD36 expression in response to oxLDLs, HNE, or the electrophilic agent diethylmaleate. In murine aortic smooth muscle cells, expressing negligible levels of CD36, both moderately and highly oxidized LDL caused only limited Nrf2 translocation and negligible increases in A170, HO- 1, and Prx I expression. However, treatment of smooth muscle cells with HNE significantly enhanced nuclear accumulation of Nrf2 and increased A170, HO- 1, and Prx I protein levels. Because PPAR-gamma can be activated by oxLDLs and controls expression of CD36 in macrophages, our results implicate Nrf2 as a second important transcription factor involved in the induction of the scavenger receptor CD36 and antioxidant stress genes in atherosclerosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This case-control study involved a total of 29 autistic children (Au) aged 6 to 12 years, and 28 gender and age-matched typically developing children (TD). We evaluated a high number of peripheral oxidative stress parameters, erythrocyte and lymphocyte membrane functional features and membrane lipid composition of erythrocyte. Erythrocyte TBARS, Peroxiredoxin II, Protein Carbonyl Groups and urinary HEL and isoprostane levels were elevated in AU (confirming an imbalance of the redox status of Au); other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma Total antioxidant capacity and plasma carbonyl groups, erythrocyte SOD and catalase activities) were unchanged, whilst peroxiredoxin I showed a trend of elevated levels in red blood cells of Au children. A very significant reduction of both erythrocyte and lymphocyte Na+, K+-ATPase activity (NKA), a reduction of erythrocyte membrane fluidity, a reduction of phospatydyl serine exposition on erythrocyte membranes, an alteration in erythrocyte fatty acid membrane profile (increase in MUFA and in ω6/ω3 ratio due to decrease in EPA and DHA) and a reduction of cholesterol content of erythrocyte membrane were found in Au compared to TD, without change in erythrocyte membrane sialic acid content and in lymphocyte membrane fluidity. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity, and ADOS and CARS score are inversely related to peroxiredoxin II levels. Oxidative stress and erythrocyte structural and functional alterations may play a role in the pathogenesis of Autism Spectrum Disorders and could be potentially utilized as peripheral biomarkers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioinformática

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteins containing reactive cysteine residues (protein-Cys) are receiving increased attention as mediators of hydrogen peroxide signaling. These proteins are mainly identified by mining the thiol proteomes of oxidized protein-Cys in cells and tissues. However, it is difficult to determine if oxidation occurs through a direct reaction with hydrogen peroxide or by thiol-disulfide exchange reactions. Kinetic studies with purified proteins provide invaluable information about the reactivity of protein-Cys residues with hydrogen peroxide. Previously, we showed that the characteristic UV-Vis spectrum of horseradish peroxidase compound I, produced from the oxidation of horseradish peroxidase by hydrogen peroxide, is a simple, reliable, and useful tool to determine the second-order rate constant of the reaction of reactive protein-Cys with hydrogen peroxide and peroxynitrite. Here, the method is fully described and extended to quantify reactive protein-Cys residues and micromolar concentrations of hydrogen peroxide. Members of the peroxiredoxin family were selected for the demonstration and validation of this methodology. In particular, we determined the pK(a) of the peroxidatic thiol of rPrx6 (5.2) and the second-order rate constant of its reactions with hydrogen peroxide ((3.4 +/- 0.2) x 10(7) M(-1) s(-1)) and peroxynitrite ((3.7 +/- 0.4) x 10(5) M(-1) s(-1)) at pH 7.4 and 25 degrees C. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Peroxiredoxin (PRDX) and thioredoxin (TRX) are antioxidant proteins that control cellular signalling and redox balance, although their response to exercise is unknown. This study aimed to assess key aspects of the PRDX-TRX redox cycle in response to three different modes of exercise. Methods. Healthy males (n = 10, mean ± SD: 22 ± 3 yrs) undertook three exercise trials on separate days: two steady-state cycling trials at moderate (60% VO2MAX; 27 min, MOD) and high (80% VO2MAX; 20 min, HIGH) intensities, and a low-volume high-intensity interval training trial (10 × 1 min 90% VO2MAX, LV-HIIT). Peripheral blood mononuclear cells were assessed for TRX-1 and over-oxidised PRDX (isoforms I-IV) protein expression before, during, and 30 min following exercise (post + 30). The activities of TRX reductase (TRX-R) and the nuclear factor kappa B (NF-κB) p65 subunit were also assessed. Results. TRX-1 increased during exercise in all trials (MOD, + 84.5%; HIGH, + 64.1%; LV-HIIT, + 205.7%; p < 05), whereas over-oxidised PRDX increased during HIGH only (MOD, - 28.7%; HIGH, + 202.9%; LV-HIIT, - 22.7%; p < .05). TRX-R and NF-κB p65 activity increased during exercise in all trials, with the greatest response in TRX-R activity seen in HIGH (p < 0.05). Discussion. All trials stimulated a transient increase in TRX-1 protein expression during exercise. Only HIGH induced a transient over-oxidation of PRDX, alongside the greatest change in TRX-R activity. Future studies are needed to clarify the significance of heightened peroxide exposure during continuous high-intensity exercise and the mechanisms of PRDX-regulatory control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snakebite is a neglected disease and serious health problem in Brazil, with most bites being caused by snakes of the genus Bothrops. Although serum therapy is the primary treatment for systemic envenomation, it is generally ineffective in neutralizing the local effects of these venoms. In this work, we examined the ability of 7,8,3'-trihydroxy-4'-methoxyisoflavone (TM), an isoflavone from Dipteryx alata, to neutralize the neurotoxicity (in mouse phrenic nerve-diaphragm preparations) and myotoxicity (assessed by light microscopy) of Bothrops jararacussu snake venom in vitro. The toxicity of TM was assessed using the Salmonella microsome assay (Ames test). Incubation with TM alone (200 μg/mL) did not alter the muscle twitch tension whereas incubation with venom (40 μg/mL) caused irreversible paralysis. Preincubation of TM (200 μg/mL) with venom attenuated the venom-induced neuromuscular blockade by 84% ± 5% (mean ± SEM; n = 4). The neuromuscular blockade caused by bothropstoxin-I (BthTX-I), the major myotoxic PLA2 of this venom, was also attenuated by TM. Histological analysis of diaphragm muscle incubated with TM showed that most fibers were preserved (only 9.2% ± 1.7% were damaged; n = 4) compared to venom alone (50.3% ± 5.4% of fibers damaged; n = 3), and preincubation of TM with venom significantly attenuated the venom-induced damage (only 17% ± 3.4% of fibers damaged; n = 3; p < 0.05 compared to venom alone). TM showed no mutagenicity in the Ames test using Salmonella strains TA98 and TA97a with (+S9) and without (-S9) metabolic activation. These findings indicate that TM is a potentially useful compound for antagonizing the neuromuscular effects (neurotoxicity and myotoxicity) of B. jararacussu venom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessment of central blood pressure (BP) has grown substantially over recent years because evidence has shown that central BP is more relevant to cardiovascular outcomes than peripheral BP. Thus, different classes of antihypertensive drugs have different effects on central BP despite similar reductions in brachial BP. The aim of this study was to investigate the effect of nebivolol, a β-blocker with vasodilator properties, on the biochemical and hemodynamic parameters of hypertensive patients. Experimental single cohort study conducted in the outpatient clinic of a university hospital. Twenty-six patients were recruited. All of them underwent biochemical and hemodynamic evaluation (BP, heart rate (HR), central BP and augmentation index) before and after 3 months of using nebivolol. 88.5% of the patients were male; their mean age was 49.7 ± 9.3 years and most of them were overweight (29.6 ± 3.1 kg/m2) with large abdominal waist (102.1 ± 7.2 cm). There were significant decreases in peripheral systolic BP (P = 0.0020), diastolic BP (P = 0.0049), HR (P < 0.0001) and central BP (129.9 ± 12.3 versus 122.3 ± 10.3 mmHg; P = 0.0083) after treatment, in comparison with the baseline values. There was no statistical difference in the augmentation index or in the biochemical parameters, from before to after the treatment. Nebivolol use seems to be associated with significant reduction of central BP in stage I hypertensive patients, in addition to reductions in brachial systolic and diastolic BP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase I trials use a small number of patients to define a maximum tolerated dose (MTD) and the safety of new agents. We compared data from phase I and registration trials to determine whether early trials predicted later safety and final dose. We searched the U.S. Food and Drug Administration (FDA) website for drugs approved in nonpediatric cancers (January 1990-October 2012). The recommended phase II dose (R2PD) and toxicities from phase I were compared with doses and safety in later trials. In 62 of 85 (73%) matched trials, the dose from the later trial was within 20% of the RP2D. In a multivariable analysis, phase I trials of targeted agents were less predictive of the final approved dose (OR, 0.2 for adopting ± 20% of the RP2D for targeted vs. other classes; P = 0.025). Of the 530 clinically relevant toxicities in later trials, 70% (n = 374) were described in phase I. A significant relationship (P = 0.0032) between increasing the number of patients in phase I (up to 60) and the ability to describe future clinically relevant toxicities was observed. Among 28,505 patients in later trials, the death rate that was related to drug was 1.41%. In conclusion, dosing based on phase I trials was associated with a low toxicity-related death rate in later trials. The ability to predict relevant toxicities correlates with the number of patients on the initial phase I trial. The final dose approved was within 20% of the RP2D in 73% of assessed trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrimidine-5'-nucleotidase type I (P5'NI) deficiency is an autosomal recessive condition that causes nonspherocytic hemolytic anemia, characterized by marked basophilic stippling and pyrimidine nucleotide accumulation in erythrocytes. We herein present two African descendant patients, father and daughter, with P5'N deficiency, both born from first cousins. Investigation of the promoter polymorphism of the uridine diphospho glucuronosyl transferase 1A (UGT1A) gene revealed that the father was homozygous for the allele (TA7) and the daughter heterozygous (TA6/TA7). P5'NI gene (NT5C3) gene sequencing revealed a further change in homozygosity at amino acid position 56 (p.R56G), located in a highly conserved region. Both patients developed gallstones; however the father, who had undergone surgery for the removal of stones, had extremely severe intrahepatic cholestasis and, liver biopsy revealed fibrosis and siderosis grade III, leading us to believe that the homozygosity of the UGT1A polymorphism was responsible for the more severe clinical features in the father. Moreover, our results show how the clinical expression of hemolytic anemia is influenced by epistatic factors and we describe a new mutation in the P5'N gene associated with enzyme deficiency, iron overload, and severe gallstone formation. To our knowledge, this is the first description of P5'N deficiency in South Americans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to characterize the effects of partial inhibition of respiratory complex I by rotenone on H2O2 production by isolated rat brain mitochondria in different respiratory states. Flow cytometric analysis of membrane potential in isolated mitochondria indicated that rotenone leads to uniform respiratory inhibition when added to a suspension of mitochondria. When mitochondria were incubated in the presence of a low concentration of rotenone (10 nm) and NADH-linked substrates, oxygen consumption was reduced from 45.9 ± 1.0 to 26.4 ± 2.6 nmol O2 mg(-1) min(-1) and from 7.8 ± 0.3 to 6.3 ± 0.3 nmol O2 mg(-1) min(-1) in respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration), respectively. Under these conditions, mitochondrial H2O2 production was stimulated from 12.2 ± 1.1 to 21.0 ± 1.2 pmol H2O2 mg(-1) min(-1) and 56.5 ± 4.7 to 95.0 ± 11.1 pmol H2O2 mg(-1) min(-1) in respiratory states 3 and 4, respectively. Similar results were observed when comparing mitochondrial preparations enriched with synaptic or nonsynaptic mitochondria or when 1-methyl-4-phenylpyridinium ion (MPP(+)) was used as a respiratory complex I inhibitor. Rotenone-stimulated H2O2 production in respiratory states 3 and 4 was associated with a high reduction state of endogenous nicotinamide nucleotides. In succinate-supported mitochondrial respiration, where most of the mitochondrial H2O2 production relies on electron backflow from complex II to complex I, low rotenone concentrations inhibited H2O2 production. Rotenone had no effect on mitochondrial elimination of micromolar concentrations of H2O2. The present results support the conclusion that partial complex I inhibition may result in mitochondrial energy crisis and oxidative stress, the former being predominant under oxidative phosphorylation and the latter under resting respiration conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2005 National Institutes of Health (NIH) Consensus Conference proposed new criteria for diagnosing and scoring the severity of chronic graft-versus-host disease (GVHD). The 2014 NIH consensus maintains the framework of the prior consensus with further refinement based on new evidence. Revisions have been made to address areas of controversy or confusion, such as the overlap chronic GVHD subcategory and the distinction between active disease and past tissue damage. Diagnostic criteria for involvement of mouth, eyes, genitalia, and lungs have been revised. Categories of chronic GVHD should be defined in ways that indicate prognosis, guide treatment, and define eligibility for clinical trials. Revisions have been made to focus attention on the causes of organ-specific abnormalities. Attribution of organ-specific abnormalities to chronic GVHD has been addressed. This paradigm shift provides greater specificity and more accurately measures the global burden of disease attributed to GVHD, and it will facilitate biomarker association studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), IFN-β, or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death whereas wild-type (WT) congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre(+) Ifnar(f/f) or LysM Cre(+) Ifnar(f/f)) did not sustain enhanced disease with OROV or La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar(-/-) mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar(-/-) bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV virus infection and tissue injury, and suggest that IFN signaling in non-myeloid cells contributes to the host defense against orthobunyaviruses. Oropouche virus (OROV) is an emerging arthropod-transmitted orthobunyavirus that causes episodic outbreaks of a debilitating febrile illness in humans in countries of South and Central America. The continued expansion of the range and number of its arthropod vectors increases the likelihood that OROV will spread into new regions. At present, the pathogenesis of OROV in humans or other vertebrate animals remains poorly understood. To define cellular mechanisms of control of OROV infection, we performed infection studies in a series of primary cells and mice that were deficient in key innate immune genes involved in pathogen recognition and control. Our results establish that a MAVS-dependent type I IFN signaling pathway has a dominant role in restricting OROV infection and pathogenesis in vivo.