992 resultados para PEROXIDASE-ACTIVITY
Resumo:
Chitinase and peroxidase activity in different stages of eucalypt leaves after inoculation with Puccinia psidii and acibenzolar-S-metil To elucidate some biochemical processes during infection in the pathosystem Puccinia psidii x eucalyptus, the defense metabolism in different-stage leaves was compared between rust-resistant and susceptible clones, respectively. In addition, chitinase and peroxidase activities were assayed. Each treatment consisted of 4 replicates, in a completely randomized design: 2 clones, inoculated and not inoculated with P. psidii; sprayed with acibenzolar-S-methyl (ASM) and distilled water; and represented by the 1(st) leaf pair (size equivalent to 1/5 total leaf development), 2(nd) pair (2/5 total development), and 4(th) pair (4/5 total leaf length). Leaves were harvested in 4 periods: 0, 24, 72 and 96 hours after inoculation. Results indicated that ASM treatment or P. psidii action led to higher chitinase and peroxidase activity level but did not alter the expression of these activities in developed leaves (4(th) pair) during the experiment. Alterations in enzyme levels after inoculation were only observed in developing leaves (1(st) and 2(nd) pairs), which suggests that the response to infection was concomitant to chitinase and peroxidase synthesis. The highest increases in enzymatic activities were observed in resistant clones at 72 hours after inoculation and in susceptible ones previously treated with ASM and later inoculated with the pathogen.
Resumo:
Normal in vitro thyroid peroxidase (TPO) iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml) or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml). A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml) and some amino acids (cysteine, tryptophan and methionine, 50 µM each) also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml), and tyrosine, phenylalanine and histidine (50 µM each) inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml) or any other amino acid (50 µM) tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine) or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine). Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2) concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.
Resumo:
Asthma is an inflammatory condition characterized by the involvement of several mediators, including reactive oxygen species. The aim of the present study was to investigate the superoxide release and cellular glutathione peroxidase (cGPx) activity in peripheral blood granulocytes and monocytes from children and adolescents with atopic asthma. Forty-four patients were selected and classified as having intermittent or persistent asthma (mild, moderate or severe). The spontaneous or phorbol myristate acetate (PMA, 30 nM)-induced superoxide release by granulocytes and monocytes was determined at 0, 5, 15, and 25 min. cGPx activity was assayed spectrophotometrically. The spontaneous superoxide release by granulocytes from patients with mild (N = 15), moderate (N = 12) or severe (N = 6) asthma was higher at 25 min compared to healthy individuals (N = 28, P < 0.05, Duncan test). The PMA-induced superoxide release by granulocytes from patients with moderate (N = 12) or severe (N = 6) asthma was higher at 15 and 25 min compared to healthy individuals (N = 28, P < 0.05 in both times of incubation, Duncan test). The spontaneous or PMA-induced superoxide release by monocytes from asthmatic patients was similar to healthy individuals (P > 0.05 in all times of incubation, Duncan test). cGPx activity of granulocytes and monocytes from patients with persistent asthma (N = 20) was also similar to healthy individuals (N = 10, P > 0.05, Kruskal-Wallis test). We conclude that, under specific circumstances, granulocytes from children with persistent asthma present a higher respiratory burst activity compared to healthy individuals. These findings indicate a risk of oxidative stress, phagocyte auto-oxidation, and the subsequent release of intracellular toxic oxidants and enzymes, leading to additional inflammation and lung damage in asthmatic children.
Resumo:
Due to the fact that previous studies on the enzymatic activity of Glutathione peroxidase (GSH-Px) diverge widely in their methodology and results, this study aimed to investigate the influence of different analytical conditions on GSH-Px activity in chicken thighs from broilers that were fed different diets with different sources and concentrations of selenium. GSH-Px activity was evaluated six hours after slaughter and 120 days after frozen storage at -18 ºC. The different analytical conditions included time of pre-incubation (0, 10 and 30 minutes), reaction medium, types of substrate (H2O2 (0.72 mM, 7.2 mM, and 72 mM) and Terc-butil hydroperoxide 15 mM), and different buffer concentrations (buffer 1, potassium phosphate 50 mM pH 7.0 + EDTA 1 mM + mercaptoethanol 1 mM, and buffer 2, tris-HCl 50 mM pH 7.6 + EDTA 1 mM + mercapthanol 5 mM). The results show that the highest GSH-Px activity was observed when enzyme and substrate were in contact at 22 ºC without any pre-incubation, and that, when used at concentrations above 0.72 mM, hydrogen peroxide saturated the GSH-Px enzyme and inhibited its activity. The enzyme presented higher affinity to hydrogen peroxide when compared to terc-butil peroxide, and the addition of a buffer containing mercaptoethanol did not increase GSH-Px enzymatic activity. The activity of GSH-Px was not influenced by the source and concentration of selenium in the diet either. The obtained results allowed the determination of the best temperature of contact between the enzyme and substrate (22 ºC), the optimum concentration, and the type of substrate and buffer to be used. This information is extremely useful for future studies on GSH-Px activity in meat due to the divergence and little information found in the literature.
Resumo:
Enzymatic senescence processes and browning of fresh cut vegetables negatively affect their sensory properties and nutritional value and finally result in the rejection of affected products by consumers. In order to prevent quality decay, the combined effects of natural antioxidants and storage temperature on peroxidase activity and sensory attributes (overall visual quality, browning and odor) of individual and mixed vegetables for soup (butternut squash, leek and celery) were evaluated. Fresh cut vegetables were treated with antioxidant solutions as tea tree essential oil (15 μl/mL), propolis extract (15 μl/mL) and gallic acid (2 mg/mL) and stored at optimal (5 °C) and abusive (15 °C) temperature for a maximum of 14 days. The application of natural preservatives, plus optimal storage conditions, exerted significant inhibitory effects in peroxidase activity of squash, celery and mixed vegetables throughout the storage. Furthermore, propolis treatment applied on mixed vegetables retarded browning appearance and preserved the visual quality for a longer period when compared to untreated product.
Resumo:
A novel biomarker was developed in Daphnia magna to detect organic pollution in groundwater. The haem peroxidase assay, which is an indirect means of measuring oxidase activity, was particularly sensitive to kerosene contamination. Exposure to sub-lethal concentrations of kerosene-contaminated groundwater resulted in a haem peroxidase activity increase by dose with a two-fold activity peak at 25%. Reproduction in D. magna remained unimpaired when exposed to concentrations below 25% for 21 days, and a decline in fecundity was only observed at concentrations above the peak in enzyme activity. The measurement of haem peroxidase activity in D. magna detected sublethal effects of kerosene in just 24 h, whilst offering information on the health status of the organisms. The biomarker may be useful in determining concentrations above which detrimental effects would occur from long-term exposure for fuel hydrocarbons. Moreover, this novel assay detects exposure to chemicals in samples that would normally be classified as non-toxic by acute toxicity tests.
Resumo:
The objective of this study was to determine the concentration of total selenium (Se) and the proportions of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in the post mortem tissues of female pheasants (Phasianus Colchicus Torquator) offered diets containing graded additions of selenized enriched yeast (SY) or sodium selenite (SS). Thiobarbituric acid reactive substances (TBARS) and tissue glutathione peroxidase (GSH-Px) activity of breast (Pectoralis Major) were assessed at 0 and 5 d post-mortem. A total of 216 female pheasant chicks were enrolled onto the study. 24 birds were euthanased at the start of the study and samples of blood, breast muscle, leg muscle (Peroneus Longus and M. Gastrocnemius), heart, liver, kidney and gizzard collected for determination of total Se. Remaining birds were blocked by live weight and randomly allocated to one of four dietary treatments (n=48 birds/treatment) that either differed in Se source (SY vs. SS) or dose (Con [0.2 mg total Se/kg], SY-L and SS-L [0.3 mg/kg total Se as SY and SS, respectively], and SY-H [0.45 mg total Se/kg]). Following 42 and 91 days of treatment 24 birds/treatment were euthanased and samples of blood, breast muscle, leg muscle, heart, liver, kidney and gizzard retained for determination of total Se and the proportion of total Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and TBARS were determined in breast tissue at the end of the study. There were positive responses (P<0.001) in both blood and tissues to the graded addition of SY to the diet but the same responses were not apparent in the blood and tissues of selenite supplemented birds receiving comparable doses. Although there were differences between tissue types in the distribution of SeMet and SeCys there were few differences between treatments. There were effects of treatment on erythrocyte GSH-Px activity (P = 0.012) with values being higher in treatments SY-H and SS-L when compared to the negative control and treatment SY-L. There were no effects of treatment on tissue GSH-Px activity which is reflected in the overall lack of any treatment effects on TBARS.
Resumo:
A Caulobacter crescentus rho:Tn5 mutant strain presenting a partially functional transcription termination factor Rho is highly sensitive to hydrogen peroxide in both exponential and stationary phases. The mutant was shown to be permanently under oxidative stress, based on fluorophore oxidation, and also to be sensitive to tert-butyl hydroperoxide and paraquat. However, the results showed that the activities of superoxide dismutases CuZnSOD and FeSOD and the alkylhydroperoxide reductase ahpC mRNA levels in the rho mutant were comparable to the wild-type control in the exponential and stationary phases. In contrast, the KatG catalase activity of the rho mutant strain was drastically decreased and did not show the expected increase in the stationary phase compared with the exponential phase. Transcription of the katG gene was increased in the rho mutant and the levels of the immunoreactive KatG protein do not differ considerably compared with the wild type in the stationary phase, suggesting that KatG activity is affected in a translational or a post-translational step.
Resumo:
Despite being one of the most important antioxidant defenses, Cu,Zn-superoxide dismutase (Sod1) has been frequently associated with harmful effects, including neurotoxicity. This toxicity has been attributed to immature forms of Sod1 and extraneous catalytic activities. Among these, the ability of Sod1 to function as a peroxidase may be particularly relevant because it is increased in bicarbonate buffer and produces the reactive carbonate radical. Despite many studies, how this radical forms remains unknown. To address this question, we systematically studied hSod1 peroxidase activity in the presence of nitrite, formate, and bicarbonate-carbon dioxide. Kinetic analyses of hydrogen peroxide consumption and of nitrite, formate, and bicarbonate-carbon dioxide oxidation showed that the Sod1-bound hydroxyl-like oxidant functions in the presence of nitrite and formate. In the presence of bicarbonate-carbon dioxide, this oxidant is replaced by peroxymonocarbonate, which is then reduced to the carbonate radical. Peroxymonocarbonate intermediacy was evidenced by (13)C NMR experiments showing line broadening of its peak in the presence of Zn,ZnSod1. In agreement, peroxymonocarbonate was docked into the hSod1 active site, where it interacted with the conserved Arg(143). Also, a reaction between peroxymonocarbonate and Cu(I)Sod1 was demonstrated by stopped-flow experiments. Kinetic simulations indicated that peroxymonocarbonate is produced during Sod1 turnover and not in bulk solution. In the presence of bicarbonate-carbon dioxide, sustained hSod1-mediated oxidations occurred with low steady-state concentrations of hydrogen peroxide (4-10 mu M). Thus, carbonate radical formation through peroxymonocarbonate may be a key event in Sod1-induced toxicity.
Resumo:
Unlike intermolecular disulfide bonds, other protein cross-links arising from oxidative modifications cannot be reversed and are presumably more toxic to cells because they may accumulate and induce protein aggregation. However, most of these irreversible protein cross-links remain poorly characterized. For instance, the antioxidant enzyme human superoxide dismutase 1 (hSod1) has been reported to undergo non-disulfide covalent dimerization and further oligomerization during its bicarbonate-dependent peroxidase activity. The dimerization was shown to be dependent on the oxidation of the single, solvent-exposed TrP(32) residue of hSod1, but the covalent dimer was not isolated nor was its structure determined. In this work, the hSod1 covalent dimer was isolated, digested with trypsin in H(2)O and H(2)(18)O, and analyzed by UV-Vis spectroscopy and mass spectrometry (MS). The results demonstrate that the covalent dimer consists of two hSod1 subunits cross-linked by a ditryptophan, which contains a bond between C3 and N1 of the respective Trp(32) residues. We further demonstrate that the cross-link cleaves under usual MS/MS conditions leading to apparently unmodified Trp(32), partially hinders proteolysis, and provides a mechanism to explain the formation of hSod1 covalent trimers and tetramers. This characterization of the covalent hSod1 dimer identifies a novel oxidative modification of protein Trp residues and provides clues for studying its occurrence in vivo. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Benzidine and diamino benzidine (DAB) oxidation, typically performed by peroxidases, was demonstrated by light and electron microscopy in peroxisomes, mitochondria and membranous structures which occurred in close contact with urate crystals in Malpighian tubules of nymphs and adults of Triatoma infestans. Peroxisomes were predominantly identified in cells of the distal region of the tubules, which is engaged in excretory mechanisms. DAB oxidation in mitochondria, even in the absence of hydrogen peroxide, may indicate the existence of a mitochondrial peroxidase and possibly a cytochrome c peroxidase. The localization of the extracellular membranous structures appeared restricted to the lumen of the proximal region of the tubules and they were assumed to be remnants of endoplasmic reticulum containing peroxidases.
Resumo:
Objective: To evaluate the effect of periodontal therapy on clinical parameters as well as on total salivary peroxidase (TSP) activity and myeloperoxidase (MPO) activity in the gingival crevicular fluid (GCF) of patients with type 2 diabetes mellitus (DM2) and of systemically healthy individuals.Material and Methods: Twenty DM2 subjects with inadequate metabolic control (test group) and 20 systemically healthy individuals (control group), both groups with chronic periodontitis, were enrolled. Periodontal clinical parameters, namely periodontal probing depth (PD), clinical attachment level (CAL), visible plaque index (VPI), bleeding on probing (BOP), gingival bleeding index (GBI) and presence of suppuration (SUP), as well as TSP activity and GCF MPO activity, were assessed before and 3 months after non-surgical periodontal therapy.Results: At baseline and 3 months post-treatment, the test group presented a higher percentage of sites with VPI and BOP (p < 0.01). MPO activity in the GCF presented lower values (p < 0.05) for the test group at both baseline and the post-treatment period. The periodontal treatment resulted in a significant improvement of most clinical and enzymatic parameters for both groups (p < 0.05).Conclusions: In both groups, the periodontal therapy was effective in improving most clinical parameters and in reducing salivary and GCF enzymatic activity. The diabetic individuals presented lower MPO activity in the GCF.
Resumo:
1. In order to investigate the effect of aging on the erythrocyte glutathione system, total glutathione (GSH), glutathione reductase (GSH-red) and glutathione peroxidase (GSH-px) levels were measured in erythrocytes from 33 young (mean age = 30.5 +/- 9.7 years) and 28 aged (mean age = 68.9 +/- 11.4 years) healthy individuals.2. GSH was 3.5 +/- 1.8-mu-M/g Hb for the young group, a value significantly greater (P < 0.01) than 2.3 +/- 0.9-mu-M/g Hb found for the aged group. Similarly, GSH-red activity, 5.5 +/- 1.8 IU/g Hb, was higher (P < 0.05) for the young group than 3.4 +/- 0.9 IU/g Hb found for the aged group. The GSH-px activity levels for the young group, 21.1 +/- 5.9 IU/g Hb, were significantly greater (P < 0.01) than 12.0 +/- 3.3 IU/g Hb for the aged group. The lower activity detected in the aged group for all of these parameters of the glutathione redox system was not related to low levels of hematocrit or hemoglobin.3. There was no statistical difference in the activation coefficient (AC) of reductase (+FAD/-FAD) between groups, which seems to indicate that the lower activity of glutathione reductase observed in the aged group was not due to riboflavin deficiency.4. Additional information is required to determine the mechanisms controlling the glutathione redox system and its role in the aging process.