92 resultados para PEPTIDOGLYCAN
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Staphylococcus aureus is one of the most important contemporary human pathogens. The evolutionary “success” of this species is closely related to its remarkably capacity to acquire antibiotic resistance traits. In this perspective, it is important to extend our knowledge concerning the mechanisms of antibiotic resistance in S. aureus and to identify new antimicrobials targets.(...)
Resumo:
Part of the work described in this chapter, was the subject of the following publication: D. Vieira, T. a. Figueiredo, A. Verma, R. G. Sobral, A. M. Ludovice, H. de Lencastre, and J. Trincao, “Purification, crystallization and preliminary X-ray diffraction analysis of GatD, a glutamine amidotransferase-like protein from Staphylococcus aureus peptidoglycan,” Acta Crystallogr. Sect. F Struct. Biol. Commun., vol. 70, no. 5, pp. 1–4, Apr. 2014.
Resumo:
Cell division in Gram-negative bacteria involves the co-ordinated invagination of the three cell envelope layers to form two new daughter cell poles. This complex process starts with the polymerization of the tubulin-like protein FtsZ into a Z-ring at mid-cell, which drives cytokinesis and recruits numerous other proteins to the division site. These proteins are involved in Z-ring constriction, inner- and outer-membrane invagination, peptidoglycan remodelling and daughter cell separation. Three papers in this issue of Molecular Microbiology, from the teams of Lucy Shapiro, Martin Thanbichler and Christine Jacobs-Wagner, describe a novel protein, called DipM for Division Involved Protein with LysM domains, that is required for cell division in Caulobacter crescentus. DipM localizes to the mid-cell during cell division, where it is necessary for the hydrolysis of the septal peptidoglycan to remodel the cell wall. Loss of DipM results in severe defects in cell envelope constriction, which is deleterious under fast-growth conditions. State-of-the-art microscopy experiments reveal that the peptidoglycan is thicker and that the cell wall is incorrectly organized in DipM-depleted cells compared with wild-type cells, demonstrating that DipM is essential for reorganizing the cell wall at the division site, for envelope invagination and cell separation in Caulobacter.
Resumo:
The peptidoglycan of Gram-positive bacteria is known to trigger cytokine release from peripheral blood mononuclear cells (PBMCs). However, it requires 100-1000 times more Gram-positive peptidoglycan than Gram-negative lipopolysaccharide to release the same amounts of cytokines from target cells. Thus, either peptidoglycan is poorly active or only part of it is required for PBMC activation. To test this hypothesis, purified Streptococcus pneumoniae walls were digested with their major autolysin N-acetylmuramoyl-L-alanine amidase, and/or muramidase. Solubilized walls were separated by reverse phase high pressure chromatography. Individual fractions were tested for their PBMC-stimulating activity, and their composition was determined. Soluble components had a Mr between 600 and 1500. These primarily comprised stem peptides cross-linked to various extents. Simple stem peptides (Mr <750) were 10-fold less active than undigested peptidoglycan. In contrast, tripeptides (Mr >1000) were >/=100-fold more potent than the native material. One dipeptide (inactive) and two tripeptides (active) were confirmed by post-source decay analysis. Complex branched peptides represented </=2% of the total material, but their activity (w/w) was almost equal to that of LPS. This is the first observation suggesting that peptidoglycan stem peptides carry high tumor necrosis factor-stimulating activity. These types of structures are conserved among Gram-positive bacteria and will provide new material to help elucidate the mechanism of peptidoglycan-induced inflammation.
Resumo:
Chlamydiales are obligate intracellular bacteria including some important pathogens causing trachoma, genital tract infections and pneumonia, among others. They share an atypical division mechanism, which is independent of an FtsZ homologue. However, they divide by binary fission, in a process inhibited by penicillin derivatives, causing the formation of an aberrant form of the bacteria, which is able to survive in the presence of the antibiotic. The paradox of penicillin sensitivity of chlamydial cells in the absence of detectable peptidoglycan (PG) was dubbed the chlamydial anomaly, since no PG modified by enzymes (Pbps) that are the usual target of penicillin could be detected in Chlamydiales. We review here the recent advances in this field with the first direct and indirect evidences of PG-like material in both Chlamydiaceae and Chlamydia-related bacteria. Moreover, PG biosynthesis is required for proper localization of the newly described septal proteins RodZ and NlpD. Taken together, these new results set the stage for a better understanding of the role of PG and septal proteins in the division mechanism of Chlamydiales and illuminate the long-standing chlamydial anomaly. Moreover, understanding the chlamydial division mechanism is critical for the development of new antibiotics for the treatment of chlamydial chronic infections.
Resumo:
Xylella fastidiosa is a Gram-negative xylem-limited plant pathogenic bacterium responsible for several economically important crop diseases. Here, we present a novel and efficient protein refolding protocol for the solubilization and purification of recombinant X. fastidiosa peptidoglycan-associated lipoprotein (XfPal). Pal is an outer membrane protein that plays important roles in maintaining the integrity of the cell envelope and in bacterial pathogenicity. Because Pal has a highly hydrophobic N-terminal domain, the heterologous expression studies necessary for structural and functional protein characterization are laborious once the recombinant protein is present in inclusion bodies. Our protocol based on the denaturation of the XfPal-enriched inclusion bodies with 8 M urea followed by buffer-exchange steps via dialysis proved effective for the solubilization and subsequent purification of XfPal, allowing us to obtain a large amount of relatively pure and folded protein. In addition, XfPal was biochemically and functionally characterized. The method for purification reported herein is valuable for further research on the three-dimensional structure and function of Pal and other outer membrane proteins and can contribute to a better understanding of the role of these proteins in bacterial pathogenicity, especially with regard to the plant pathogen X. fastidiosa. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Bioplastics are polymers (such as polyesters) produced from bacterial fermentations that are biodegradable and nonhazardous. They are produced by a wide variety of bacteria and are made only when stress conditions allow, such as when nutrient levels are low, more specifically levels of nitrogen and oxygen. These stress conditions cause certain bacteria to build up excess carbon deposits as energy reserves in the form of polyhydroxyalkanoates (PHAs). PHAs can be extracted and formed into actual plastic with the same strength of conventional, synthetic-based plastics without the need to rely on foreign petroleum. The overall goal of this project was to select for a bacteria that could grow on sugars found in the lignocellulosic biomass, and get the bacteria to produce PHAs and peptidoglycan. Once this was accomplished the goal was to extract PHAs and peptidoglycan in order to make a stronger more rigid plastic, by combing them into a co-polymer. The individual goals of this project were to: (1) Select and screen bacteria that are capable of producing PHAs by utilizing the carbon/energy sources found in lignocellulosic biomass; (2) Maximize the utilization of those sugars present in woody biomass in order to produce optimal levels of PHAs. (3) Use room temperature ionic liquids (RTILs) in order to separate the cell membrane and peptidoglycan, allowing for better extraction of PHAs and more intact peptidoglycan. B. megaterium a Gram-positive PHA-producing bacterium was selected for study in this project. It was grown on a variety of different substrates in order to maximize both its growth and production of PHAs. The optimal conditions were found to be 30°C, pH 6.0 and sugar concentration of either 30g/L glucose or xylose. After optimal growth was obtained, both RTILs and enzymatic treatments were used to break the cell wall, in order to extract the PHAs, and peptidoglycan. PHAs and peptidoglycan were successfully extracted from the cell, and will be used in the future to create a new stronger co-polymer. Peptidoglycan recovery yield was 16% of the cells’ dry weight.
Resumo:
Bacterial endospores derive much of their longevity and resistance properties from the relative dehydration of their protoplasts. The spore cortex, a peptidoglycan structure surrounding the protoplasm, maintains, and is postulated to have a role in attaining, protoplast dehydration. A structural modification unique to the spore cortex is the removal of all or part of the peptide side chains from the majority of the muramic acid residues and the conversion of 50% of the muramic acid to muramic lactam. A mutation in the cwlD gene of Bacillus subtilis, predicted to encode a muramoyl-l-alanine amidase, results in the production of spores containing no muramic lactam. These spores have normally dehydrated protoplasts but are unable to complete the germination/outgrowth process to produce viable cells. Addition of germinants resulted in the triggering of germination with loss of spore refractility and the release of dipicolinic acid but no degradation of cortex peptidoglycan. Germination in the presence of lysozyme allowed the cwlD spores to produce viable cells and showed that they have normal heat resistance properties. These results (i) suggest that a mechanical activity of the cortex peptidoglycan is not required for the generation of protoplast dehydration but rather that it simply serves as a static structure to maintain dehydration, (ii) demonstrate that degradation of cortex peptidoglycan is not required for spore solute release or partial spore core rehydration during germination, (iii) indicate that muramic lactam is a major specificity determinant of germination lytic enzymes, and (iv) suggest the mechanism by which the spore cortex is degraded during germination while the germ cell wall is left intact.
Resumo:
Although the incidence of Gram-positive sepsis has risen strongly, it is unclear how Gram-positive organisms (without endotoxin) initiate septic shock. We investigated whether two cell wall components from Staphylococcus aureus, peptidoglycan (PepG) and lipoteichoic acid (LTA), can induce the inflammatory response and multiple organ dysfunction syndrome (MODS) associated with septic shock caused by Gram-positive organisms. In cultured macrophages, LTA (10 micrograms/ml), but not PepG (100 micrograms/ml), induces the release of nitric oxide measured as nitrite. PepG, however, caused a 4-fold increase in the production of nitrite elicited by LTA. Furthermore, PepG antibodies inhibited the release of nitrite elicited by killed S. aureus. Administration of both PepG (10 mg/kg; i.v.) and LTA (3 mg/kg; i.v.) in anesthetized rats resulted in the release of tumor necrosis factor alpha and interferon gamma and MODS, as indicated by a decrease in arterial oxygen pressure (lung) and an increase in plasma concentrations of bilirubin and alanine aminotransferase (liver), creatinine and urea (kidney), lipase (pancreas), and creatine kinase (heart or skeletal muscle). There was also the expression of inducible nitric oxide synthase in these organs, circulatory failure, and 50% mortality. These effects were not observed after administration of PepG or LTA alone. Even a high dose of LTA (10 mg/kg) causes only circulatory failure but no MODS. Thus, our results demonstrate that the two bacterial wall components, PepG and LTA, work together to cause systemic inflammation and multiple systems failure associated with Gram-positive organisms.
Resumo:
Gram-positive bacterial cell wall components including PGN (peptidoglycan) elicit a potent pro-inflammatory response in diverse cell types, including endothelial cells, by activating TLR2 (Toll-like receptor 2) signalling. The functional integrity of the endothelium is under the influence of a network of gap junction intercellular communication channels composed of Cxs (connexins) that also form hemichannels, signalling conduits that are implicated in ATP release and purinergic signalling. PGN modulates Cx expression in a variety of cell types, yet effects in endothelial cells remain unresolved. Using the endothelial cell line b.End5, a 6 h challenge with PGN induced IL-6 (interleukin 6), TLR2 and Cx43 mRNA expression that was associated with enhanced Cx43 protein expression and gap junction coupling. Cx43 hemichannel activity, measured by ATP release from the cells, was induced following 15 min of exposure to PGN. Inhibition of hemichannel activity with carbenoxolone or apyrase prevented induction of IL-6 and TLR2 mRNA expression by PGN, but had no effect on Cx43 mRNA expression levels. In contrast, knockdown of TLR2 expression had no effect on PGN-induced hemichannel activity, but reduced the level of TLR2 and Cx43 mRNA expression following 6 h of PGN challenge. PGN also acutely induced hemichannel activity in HeLa cells transfected to express Cx43, but had no effect in Cx43-deficient HeLa OHIO cells. All ATP responses were blocked with Cx-specific channel blockers. We conclude that acute Cx43 hemichannel signalling plays a role in the initiation of early innate immune responses in the endothelium.
Resumo:
Type IV secretion systems (T4SSs) are multiprotein complexes that transport effector proteins and protein-DNA complexes through bacterial membranes to the extracellular milieu or directly into the cytoplasm of other cells. Many bacteria of the family Xanthomonadaceae, which occupy diverse environmental niches, carry a T4SS with unknown function but with several characteristics that distinguishes it from other T4SSs. Here we show that the Xanthomonas citri T4SS provides these cells the capacity to kill other Gram-negative bacterial species in a contact-dependent manner. The secretion of one type IV bacterial effector protein is shown to require a conserved C-terminal domain and its bacteriolytic activity is neutralized by a cognate immunity protein whose 3D structure is similar to peptidoglycan hydrolase inhibitors. This is the first demonstration of the involvement of a T4SS in bacterial killing and points to this special class of T4SS as a mediator of both antagonistic and cooperative interbacterial interactions.