971 resultados para PEPTIDE-BASED VACCINES
Saponins from the Spanish saffron Crocus sativus are efficient adjuvants for protein-based vaccines.
Resumo:
Protein and peptide-based vaccines provide rigorously formulated antigens. However, these purified products are only weakly immunogenic by themselves and therefore require the addition of immunostimulatory components or adjuvants in the vaccine formulation. Various compounds derived from pathogens, minerals or plants, possess pro-inflammatory properties which allow them to act as adjuvants and contribute to the induction of an effective immune response. The results presented here demonstrate the adjuvant properties of novel saponins derived from the Spanish saffron Crocus sativus. In vivo immunization studies and tumor protection experiments unambiguously establish the value of saffron saponins as candidate adjuvants. These saponins were indeed able to increase both humoral and cellular immune responses to protein-based vaccines, ultimately providing a significant degree of protection against tumor challenge when administered in combination with a tumor antigen. This preclinical study provides an in depth immunological characterization of a new saponin as a vaccine adjuvant, and encourages its further development for use in vaccine formulations.
Resumo:
Traditional vaccines consisting of whole attenuated micro-organisms. or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection. adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity. and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic. and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system. incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore. mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.
Resumo:
BACKGROUND: Therapeutic cancer vaccines aim to boost the natural immunity against transformed cancer cells, and a series of adjuvants and co-stimulatory molecules have been proposed to enhance the immune response against weak self-antigens expressed on cancer cells. For instance, a peptide/CpG-based cancer vaccine has been evaluated in several clinical trials and was shown in pre-clinical studies to favor the expansion of effector T versus Tregs cells, resulting in a potent antitumor activity, as compared to other TLR ligands. Alternatively, the adjuvant activity of CD1d-restricted invariant NKT cells (iNKT) on the innate and adaptive immunity is well demonstrated, and several CD1d glycolipid ligands are under pre-clinical and clinical evaluation. Importantly, additive or even synergistic effects have been shown upon combined CD1d/NKT agonists and TLR ligands. The aim of the present study is to combine the activation and tumor targeting of activated iNKT, NK and T cells. METHODS: Activation and tumor targeting of iNKT cells via recombinant α-galactosylceramide (αGC)-loaded CD1d-anti-HER2 fusion protein (CD1d-antitumor) is combined or not with OVA peptide/CpG vaccine. Circulating and intratumoral NK and H-2Kb/OVA-specific CD8 responses are monitored, as well as the state of activation of dendritic cells (DC) with regard to activation markers and IL-12 secretion. The resulting antitumor therapy is tested against established tumor grafts of B16 melanoma cells expressing human HER2 and ovalbumin. RESULTS: The combined CD1d/iNKT antitumor therapy and CpG/peptide-based immunization leads to optimized expansion of NK and OVA-specific CD8 T cells (CTLs), likely resulting from the maturation of highly pro-inflammatory DCs as seen by a synergistic increase in serum IL-12. The enhanced innate and adaptive immune responses result in higher tumor inhibition that correlates with increased numbers of OVA-specific CTLs at the tumor site. Antibody-mediated depletion experiments further demonstrate that in this context, CTLs rather than NK cells are essential for the enhanced tumor inhibition. CONCLUSIONS: Altogether, our study in mice demonstrates that αGC/CD1d-antitumor fusion protein greatly increases the efficacy of a therapeutic CpG-based cancer vaccine, first as an adjuvant during T cell priming and second, as a therapeutic agent to redirect immune responses to the tumor site.
Resumo:
Summary The specific CD8+ T cell immune response against tumors relies on the recognition by the T cell receptor (TCR) on cytotoxic T lymphocytes (CTL) of antigenic peptides bound to the class I major histocompatibility complex (MHC) molecule. Such tumor associated antigenic peptides are the focus of tumor immunotherapy with peptide vaccines. The strategy for obtaining an improved immune response often involves the design of modified tumor associated antigenic peptides. Such modifications aim at creating higher affinity and/or degradation resistant peptides and require precise structures of the peptide-MHC class I complex. In addition, the modified peptide must be cross-recognized by CTLs specific for the parental peptide, i.e. preserve the structure of the epitope. Detailed structural information on the modified peptide in complex with MHC is necessary for such predictions. In this thesis, the main focus is the development of theoretical in silico methods for prediction of both structure and cross-reactivity of peptide-MHC class I complexes. Applications of these methods in the context of immunotherapy are also presented. First, a theoretical method for structure prediction of peptide-MHC class I complexes is developed and validated. The approach is based on a molecular dynamics protocol to sample the conformational space of the peptide in its MHC environment. The sampled conformers are evaluated using conformational free energy calculations. The method, which is evaluated for its ability to reproduce 41 X-ray crystallographic structures of different peptide-MHC class I complexes, shows an overall prediction success of 83%. Importantly, in the clinically highly relevant subset of peptide-HLAA*0201 complexes, the prediction success is 100%. Based on these structure predictions, a theoretical approach for prediction of cross-reactivity is developed and validated. This method involves the generation of quantitative structure-activity relationships using three-dimensional molecular descriptors and a genetic neural network. The generated relationships are highly predictive as proved by high cross-validated correlation coefficients (0.78-0.79). Together, the here developed theoretical methods open the door for efficient rational design of improved peptides to be used in immunotherapy. Résumé La réponse immunitaire spécifique contre des tumeurs dépend de la reconnaissance par les récepteurs des cellules T CD8+ de peptides antigéniques présentés par les complexes majeurs d'histocompatibilité (CMH) de classe I. Ces peptides sont utilisés comme cible dans l'immunothérapie par vaccins peptidiques. Afin d'augmenter la réponse immunitaire, les peptides sont modifiés de façon à améliorer l'affinité et/ou la résistance à la dégradation. Ceci nécessite de connaître la structure tridimensionnelle des complexes peptide-CMH. De plus, les peptides modifiés doivent être reconnus par des cellules T spécifiques du peptide natif. La structure de l'épitope doit donc être préservée et des structures détaillées des complexes peptide-CMH sont nécessaires. Dans cette thèse, le thème central est le développement des méthodes computationnelles de prédiction des structures des complexes peptide-CMH classe I et de la reconnaissance croisée. Des applications de ces méthodes de prédiction à l'immunothérapie sont également présentées. Premièrement, une méthode théorique de prédiction des structures des complexes peptide-CMH classe I est développée et validée. Cette méthode est basée sur un échantillonnage de l'espace conformationnel du peptide dans le contexte du récepteur CMH classe I par dynamique moléculaire. Les conformations sont évaluées par leurs énergies libres conformationnelles. La méthode est validée par sa capacité à reproduire 41 structures des complexes peptide-CMH classe I obtenues par cristallographie aux rayons X. Le succès prédictif général est de 83%. Pour le sous-groupe HLA-A*0201 de complexes de grande importance pour l'immunothérapie, ce succès est de 100%. Deuxièmement, à partir de ces structures prédites in silico, une méthode théorique de prédiction de la reconnaissance croisée est développée et validée. Celle-ci consiste à générer des relations structure-activité quantitatives en utilisant des descripteurs moléculaires tridimensionnels et un réseau de neurones couplé à un algorithme génétique. Les relations générées montrent une capacité de prédiction remarquable avec des valeurs de coefficients de corrélation de validation croisée élevées (0.78-0.79). Les méthodes théoriques développées dans le cadre de cette thèse ouvrent la voie du design de vaccins peptidiques améliorés.
Resumo:
Numerous phase I and II clinical trials testing the safety and immunogenicity of various peptide vaccine formulations based on CTL-defined tumor antigens in cancer patients have been reported during the last 7 years. While specific T-cell responses can be detected in a variable fraction of immunized patients, an even smaller but significant fraction of these patients have objective tumor responses. Efficient therapeutic vaccination should aim at boosting naturally occurring antitumor T- and B-cell responses and at sustaining a large number of tumor antigen specific and fully functional effector T cells at tumor sites. Recent progress in our ability to quantitatively and qualitatively monitor tumor antigen specific CD8 T-cell responses will greatly help in making rapid progress in this field.
Resumo:
BACKGROUND: Present combination antiretroviral therapy (cART) alone does not cure HIV infection and requires lifelong drug treatment. The potential role of HIV therapeutic vaccines as part of an HIV cure is under consideration. Our aim was to assess the efficacy, safety, and immunogenicity of Vacc-4x, a peptide-based HIV-1 therapeutic vaccine targeting conserved domains on p24(Gag), in adults infected with HIV-1. METHODS: Between July, 2008, and June, 2010, we did a multinational double-blind, randomised, phase 2 study comparing Vacc-4x with placebo. Participants were adults infected with HIV-1 who were aged 18-55 years and virologically suppressed on cART (viral load <50 copies per mL) with CD4 cell counts of 400 × 10(6) cells per L or greater. The trial was done at 18 sites in Germany, Italy, Spain, the UK, and the USA. Participants were randomly assigned (2:1) to Vacc-4x or placebo. Group allocation was masked from participants and investigators. Four primary immunisations, weekly for 4 weeks, containing Vacc-4x (or placebo) were given intradermally after administration of adjuvant. Booster immunisations were given at weeks 16 and 18. At week 28, cART was interrupted for up to 24 weeks. The coprimary endpoints were cART resumption and changes in CD4 counts during treatment interruption. Analyses were by modified intention to treat: all participants who received one intervention. Furthermore, safety, viral load, and immunogenicity (as measured by ELISPOT and proliferation assays) were assessed. The 52 week follow-up period was completed in June, 2011. For the coprimary endpoints the proportion of participants who met the criteria for cART resumption was analysed with a logistic regression model with the treatment effect being assessed in a model including country as a covariate. This study is registered with ClinicalTrials.gov, number NCT00659789. FINDINGS: 174 individuals were screened; because of slow recruitment, enrolment stopped with 136 of a planned 345 participants and 93 were randomly assigned to receive Vacc-4x and 43 to receive placebo. There were no differences between the two groups for the primary efficacy endpoints in those participants who stopped cART at week 28. Of the participants who resumed cART, 30 (34%) were in the Vacc-4x group and 11 (29%) in the placebo group, and percentage changes in CD4 counts were not significant (mean treatment difference -5·71, 95% CI -13·01 to 1·59). However, a significant difference in viral load was noted for the Vacc-4x group both at week 48 (median 23 100 copies per mL Vacc-4x vs 71 800 copies per mL placebo; p=0·025) and week 52 (median 19 550 copies per mL vs 51 000 copies per mL; p=0·041). One serious adverse event, exacerbation of multiple sclerosis, was reported as possibly related to study treatment. Vacc-4x was immunogenic, inducing proliferative responses in both CD4 and CD8 T-cell populations. INTERPRETATION: The proportion of participants resuming cART before end of study and change in CD4 counts during the treatment interruption showed no benefit of vaccination. Vacc-4x was safe, well tolerated, immunogenic, seemed to contribute to a viral-load setpoint reduction after cART interruption, and might be worth consideration in future HIV-cure investigative strategies. FUNDING: Norwegian Research Council GLOBVAC Program and Bionor Pharma ASA.
Resumo:
Nanoparticulate formulations for synthetic long peptide (SLP)-cancer vaccines as alternative to clinically used Montanide ISA 51- and squalene-based emulsions are investigated in this study. SLPs were loaded into TLR ligand-adjuvanted cationic liposomes and PLGA nanoparticles (NPs) to potentially induce cell-mediated immune responses. The liposomal and PLGA NP formulations were successfully loaded with up to four different compounds and were able to enhance antigen uptake by dendritic cells (DCs) and subsequent activation of T cells in vitro. Subcutaneous vaccination of mice with the different formulations showed that the SLP-loaded cationic liposomes were the most efficient for the induction of functional antigen-T cells in vivo, followed by PLGA NPs which were as potent as or even more than the Montanide and squalene emulsions. Moreover, after transfer of antigen-specific target cells in immunized mice, liposomes induced the highest in vivo killing capacity. These findings, considering also the inadequate safety profile of the currently clinically used adjuvant Montanide ISA-51, make these two particulate, biodegradable delivery systems promising candidates as delivery platforms for SLP-based immunotherapy of cancer.
Resumo:
CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.
Resumo:
The induction of potent CD8+ T cell responses by vaccines to fight microbes or tumors remains a major challenge, as many candidates for human vaccines have proved to be poorly immunogenic. Deoxycytidyl-deoxyguanosin oligodeoxynucleotides (CpG ODNs) trigger Toll-like receptor 9, resulting in dendritic cell maturation that can enhance immunogenicity of peptide-based vaccines in mice. We tested whether a synthetic ODN, CpG 7909, could improve human tumor antigen-specific CD8+ T cell responses. Eight HLA-A2+ melanoma patients received 4 monthly vaccinations of low-dose CpG 7909 mixed with melanoma antigen A (Melan-A; identical to MART-1) analog peptide and incomplete Freund's adjuvant. All patients exhibited rapid and strong antigen-specific T cell responses: the frequency of Melan-A-specific T cells reached over 3% of circulating CD8+ T cells. This was one order of magnitude higher than the frequency seen in 8 control patients treated similarly but without CpG and 1-3 orders of magnitude higher than that seen in previous studies with synthetic vaccines. The enhanced T cell populations consisted primarily of effector memory cells, which in part secreted IFN- and expressed granzyme B and perforin ex vivo. In vitro, T cell clones recognized and killed melanoma cells in an antigen-specific manner. Thus, CpG 7909 is an efficient vaccine adjuvant that promotes strong antigen-specific CD8+ T cell responses in humans.
Resumo:
The CD8 T cell response generatedby gene-based vaccines is importantfor protective immunity againstmany infectious diseases but its complexityis incompletely understood.Here, we report that different vaccinesencoding HIV Env elicit qualitativelydistinct CD8 T cells that wereidentified by patterns of gene expressionin individual cells. Three alternativeprime-boost vector combinationsstimulated antigen-specific CD8 Tcell populations of similar magnitudeand function by intracellular cytokinestaining; however, single cell geneexpression profiling enabled the discriminationof distinct CM and EMCD8 cells elicited by the three vaccines.Two previously unrecognizedCD8 T cell subsets have been definedby their coexpression of Eomes,Cxcr3 and Ccr7; or Klrk1, Klrg1 andCcr5 in CM and EM cells respectively.
Resumo:
The identification of CTL-defined tumor-associated Ags has allowed the development of new strategies for cancer immunotherapy. To potentiate the CTL responses, peptide-based vaccines require the coadministration of adjuvants. Because oligodeoxynucleotides (ODN) containing CpG motifs are strong immunostimulators, we analyzed the ability of CpG ODN to act as adjuvant of the CTL response against tumor-derived synthetic peptide in the absence or presence of IFA. Mice transgenic for a chimeric MHC class I molecule were immunized with a peptide analog of MART-1/Melan-A(26-35) in the presence of CpG ODN alone or CpG ODN emulsified in IFA. The CTL response was monitored ex vivo by tetramer staining of lymphocytes. In blood, spleen, and lymph nodes, peptide mixed with CpG ODN alone was able to elicit a stronger systemic CTL response as compared with peptide emulsified in IFA. Moreover, CpG ODN in combination with IFA further enhanced the CTL response in terms of the frequency of tetramer+CD8+ T cells ex vivo. The CTL induced in vivo against peptide analog in the presence of CpG ODN are functional, as they were able to recognize and kill melanoma cells in vitro. Overall, these results indicate that CpG ODN by itself is a good candidate adjuvant of CTL response and can also enhance the effect of classical adjuvant.