58 resultados para PELLICLE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim was to analyze the protective effects of titanium, zirconium and hafnium tetrafluorides on erosion of pellicle-free and pellicle-covered enamel and dentine in vitro. Eight groups of 20 specimens each of bovine enamel and bovine dentine were prepared. Half the specimens in each group were immersed in human saliva for 2 h for pellicle formation. Specimens were then left untreated (controls) or were treated for 120 s with TiF(4), ZrF(4) or HfF(4) solutions (0.4 or 1%) or 1.25% AmF/NaF gel. All specimens were eroded by exposure to hydrochloric acid, pH 2.6, for 25 min. Cumulative calcium release into the acid was monitored in consecutive 30-second intervals for 5 min, then at 2-min intervals up to a total erosion time of 25 min using the Arsenazo III procedure. Data were analyzed by ANOVA. 1% TiF(4) solution offered the best protective effect, especially in dentine (reduction of calcium loss about 50% at 25 min). 1% ZrF 4, 1% HfF 4 and 0.4% TiF(4) also reduced calcium loss, but to a lesser extent. Long-term effects were limited to dentine, while reduction of enamel erosion (about 25%) was restricted to 1-min erosion. The fluoride gel had a protective effect only in dentine. The efficacy of the tetrafluorides was influenced by the presence of the pellicle layer, in that the protection against dentine erosion by TiF(4) and ZrF(4) was greater on pellicle-covered specimens. Tetrafluoride solutions, especially 1% TiF(4), could decrease dental erosion, but were more effective on dentine than on enamel. Copyright (C) 2008 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To investigate and compare the protective impact of the in situ formed salivary pellicle on enamel and dentine erosion caused by different acids at pH 2.6. Methods. Bovine enamel and dentine samples were exposed for 120 min in the oral cavity of 10 healthy volunteers. Subsequently, enamel and dentine pellicle-covered specimens were extraorally immersed in 1 ml hydrochloric, citric or phosphoric acid (pH 2.6, 60 s, each acid n=30 samples). Pellicle-free samples (each acid n=10) served as controls. Calcium release into the acid was determined by atomic absorption spectroscopy. The data were analysed by two-way ANOVA and Tukey's test (alpha=0.05). Results. Pellicle-covered samples showed significantly less calcium loss compared to pellicle-free samples in all acid groups. The mean (SD) pellicle protection (% reduction of calcium loss) was significantly better for enamel samples [60.9 (5.3)] than for dentine samples [30.5 (5.0)], but revealed no differences among the acids. Conclusion. The efficacy of the in situ pellicle in reducing erosion was 2-fold better for enamel than for dentine. Protection of the pellicle was not influenced by the kind of acid when enamel and dentine erosion was performed at pH 2.6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acquired enamel pellicle (AEP) is a thin film formed by the selective adsorption of salivary proteins onto the enamel surface of teeth. The AEP forms a critical interface between the mineral phase of teeth (hydroxyapatite) and the oral microbial biofilm. This biofilm is the key feature responsible for the development of dental caries. Fluoride on enamel surface is well known to reduce caries by reducing the solubility of enamel to acid. Information on the effects of fluoride on AEP formation is limited. This study aimed to investigate the effects of fluoride treatment on hydroxyapatite on the subsequent formation of AEP. In addition, this study pioneered the use of label-free quantitative proteomics to better understand the composition of AEP proteins. Hydroxyapatite discs were randomly divided in 4 groups (n = 10 per group). Each disc was exposed to distilled water (control) or sodium fluoride solution (1, 2 or 5%) for 2 hours. Discs were then washed and immersed in human saliva for an additional 2 hours. AEP from each disc was collected and subjected to liquid chromatography electrospray ionization mass spectrometry for protein identification, characterization and quantification. A total of 45 proteins were present in all four groups, 12 proteins were exclusively present in the control group and another 19 proteins were only present in the discs treated with 5% sodium fluoride. Relative proteomic quantification was carried out for the 45 proteins observed in all four groups. Notably, the concentration of important salivary proteins, such as statherin and histatin 1, decrease with increasing levels of fluoride. It suggests that these proteins are repulsed when hydroxyapatite surface is coated with fluoride. Our data demonstrated that treatment of hydroxyapatite with fluoride (at high concentration) qualitatively and quantitatively modulates AEP formation, effects which in turn will likely impact the formation of oral biofilms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acquired enamel pellicle that forms on the tooth surface serves as a natural protective barrier against dental erosion. Numerous proteins composing the pellicle serve different functions within this thin layer. Our study examined the effect of incorporated mucin and casein on the erosion-inhibiting potential of the acquired enamel pellicle. Cyclic acidic conditions were applied to mimic the erosive environment present at the human enamel interface during the consumption of soft drinks. One hundred enamel specimens were prepared for microhardness tests and distributed randomly into 5 groups (n = 20) that received the following treatment: deionized water, humidity chamber, mucin, casein, or a combination of mucin and casein. Each group was exposed to 3 cycles of a 2-hour incubation in human saliva, followed by a 2-hour treatment in the testing solution and a 1-min exposure to citric acid. The microhardness analysis demonstrated that the mixture of casein and mucin significantly improved the erosion-inhibiting properties of the human pellicle layer. The addition of individual proteins did not statistically impact the function of the pellicle. These data suggest that protein-protein interactions may play an important role in the effectiveness of the pellicle to prevent erosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (p<0.05) by removing the pellicle layer with 3% NaOCl solution. Change of the measurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES Application of the recently developed optical method based on the monitoring of the specular reflection intensity to study the protective potential of the salivary pellicle layer against early enamel erosion. METHODS The erosion progression was compared between two treatment groups: enamel samples coated by the 15 h-in vitro-formed salivary pellicle layer (group P, n=90) and the non-coated enamel surfaces (control group C, n=90). Different severity of the erosive impact was modelled by the enamel incubation in 1% citric acid (pH=3.6) for 2, 4, 8, 10 or 15 min. Erosion quantification was performed by the optical method as well as by the microhardness and calcium release analyses. RESULTS Optical assessment of the erosion progression showed erosion inhibition by the in vitro salivary pellicle in short term acidic treatments (≤ 4 min) which was also confirmed by microhardness measurements proving significantly less (p<0.05) enamel softening in the group P at 2 and 4 min of erosion compared to the group C. SEM images demonstrated less etched enamel interfaces in the group P at short erosion durations as well. CONCLUSIONS Monitoring of the specular reflection intensity can be successfully applied to quantify early erosion progression in comparative studies. In vitro salivary pellicle (2h) provides erosion inhibition but only in short term acidic exposures. CLINICAL SIGNIFICANCE The proposed optical technique is a promising tool for the fast and non-invasive erosion quantification in clinical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Whole saliva comprises components of the salivary pellicle that spontaneously forms on surfaces of implants and teeth. However, there are no studies that functionally link the salivary pellicle with a possible change in gene expression. MATERIALS AND METHODS This study examined the genetic response of oral fibroblasts exposed to the salivary pellicle and whole saliva. Oral fibroblasts were seeded onto a salivary pellicle and the respective untreated surface. Oral fibroblasts were also exposed to freshly harvested sterile-filtered whole saliva. A genome-wide microarray of oral fibroblasts was performed, followed by gene ontology screening with DAVID functional annotation clustering, KEGG pathway analysis, and the STRING functional protein association network. RESULTS Exposure of oral fibroblasts to saliva caused 61 genes to be differentially expressed (P < .05). Gene ontology screening assigned the respective genes into 262 biologic processes, 3 cellular components, 13 molecular functions, and 7 pathways. Most remarkable was the enrichment in the inflammatory response. None of the genes regulated by whole saliva was significantly changed when cells were placed onto a salivary pellicle. CONCLUSION The salivary pellicle per se does not provoke a significant inflammatory response of oral fibroblasts in vitro, whereas sterile-filtered whole saliva does produce a strong inflammatory response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New preventive approaches against dental erosion caused by acidic drinks and beverages include fortification of beverages with natural polymers. We have shown that the mixture of casein and mucin significantly improved the erosion-inhibiting properties of the human pellicle layer. This study aimed to investigate the effect of pellicle modification by casein, mucin and a casein-mucin mixture on the adhesion of early bacterial colonizers. Test specimens of human tooth enamel were prepared, covered with saliva and coated with 0.5% aqueous (aq.) casein, 0.27% aq. mucin or with 0.5% aq. casein-0.27% aq. mucin, after which the adhesion of Streptococcus gordonii, Streptococcus oralis, and Actinomyces odontolyticus was measured after incubation for 30 min and 2 h. log10 colony-forming units were compared by nonparametric tests. All three bacterial strains adhered in higher number to pellicle-coated enamel than to native enamel. The protein modifications of pellicle all decreased the counts of adhering bacteria up to 0.34 log10/mm2, the most efficient being the casein-mucin mixture. In addition to the recently shown erosion-reducing effect by casein-mucin, modification of the pellicle may inhibit bacterial adherence compared to untreated human pellicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trehalose dimycolate (TDM) is a mycobacterial glycolipid that is released from the surface of virulent M. tuberculosis. We evaluated the rate of growth, colony characteristics and production of TDM by Mycobacterium tuberculosis strains isolated from different clinical sites. Since detergent removes TDM from organisms, we analyzed growth rate and colony morphology of 79 primary clinical isolates grown as pellicles on the surface of detergent free Middlebrook 7H9 media. The genotype of each had been previously characterized. TDM production was measured by thin layer chromatography on 32 of these isolates. We found that strains isolated from pulmonary sites produced large amounts of TDM, grew rapidly as thin spreading pellicles, showed early cording (<1 week) and climbed the sides of the dish. In contrast, the extrapulmonary isolates (lymph node and bone marrow) produced less TDM (p<0.01), grew as discrete patches with little tendency to spread or climb the walls (p<0.02). The Beijing pulmonary (BP) isolates produced more TDM than non Beijing pulmonary isolates. The largest differences were observed in Beijing strains. The Beijing pulmonary isolates produced more TDM and grew faster than the Beijing extrapulmonary isolates (p<0.01). This was true even when the pulmonary and extrapulmonary isolates were derived from the same clade. These growth characteristics were consistently observed only on the first passage after primary isolation. This suggests that the differences in growth rate and TDM production observed reflect differences in gene expression patterns of pulmonary and extrapulmonary infections, that Mycobacterium tuberculosis in the lung grows more rapidly and produces more TDM than it does in extrapulmonary sites. This provides new opportunities to investigate gene expression of Mycobacterium tuberculosis in human.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Friction coefficient (FC) was quantified between titanium-titanium (Ti-Ti) and titanium-zirconia (Ti-Zr), materials commonly used as abutment and implants, in the presence of a multispecies biofilm (Bf) or salivary pellicle (Pel). Furthermore, FC was used as a parameter to evaluate the biomechanical behavior of a single implant-supported restoration. Interface between Ti-Ti and Ti-Zr without Pel or Bf was used as control (Ctrl). FC was recorded using tribometer and analyzed by two-way Anova and Tukey test (p<0.05). Data were transposed to a finite element model of a dental implant-supported restoration. Models were obtained varying abutment material (Ti and Zr) and FCs recorded (Bf, Pel, and Ctrl). Maximum and shear stress were calculated for bone and equivalent von Misses for prosthetic components. Data were analyzed using two-way ANOVA (p<0.05) and percentage of contribution for each condition (material and FC) was calculated. FC significant differences were observed between Ti-Ti and Ti-Zr for Ctrl and Bf groups, with lower values for Ti-Zr (p<0.05). Within each material group, Ti-Ti differed between all treatments (p<0.05) and for Ti-Zr, only Pel showed higher values compared with Ctrl and Bf (p<0.05). FC contributed to 89.83% (p<0.05) of the stress in the screw, decreasing the stress when the FC was lower. FC resulted in an increase of 59.78% of maximum stress in cortical bone (p=0.05). It can be concluded that the shift of the FC due to the presence of Pel or Bf is able to jeopardize the biomechanical behavior of a single implant-supported restoration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dental erosion is defined as the loss of tooth substance by acid exposure not involving bacteria. The etiology of erosion is related to different behavioral, biological and chemical factors. Based on an overview of the current literature, this paper presents a summary of the preventive strategies relevant for patients suffering from dental erosion. Behavioral factors, such as special drinking habits, unhealthy lifestyle factors or occupational acid exposure, might modify the extent of dental erosion. Thus, preventive strategies have to include measures to reduce the frequency and duration of acid exposure as well as adequate oral hygiene measures, as it is known that eroded surfaces are more susceptible to abrasion. Biological factors, such as saliva or acquired pellicle, act protectively against erosive demineralization. Therefore, the production of saliva should be enhanced, especially in patients with hyposalivation or xerostomia. With regard to chemical factors, the modification of acidic solutions with ions, especially calcium, was shown to reduce the demineralization, but the efficacy depends on the other chemical factors, such as the type of acid. To enhance the remineralization of eroded surfaces and to prevent further progression of dental wear, high-concentrated fluoride applications are recommended. Currently, little information is available about the efficacy of other preventive strategies, such as calcium and laser application, as well as the use of matrix metalloproteinase inhibitors. Further studies considering these factors are required. In conclusion, preventive strategies for patients suffering from erosion are mainly obtained from in vitro and in situ studies and include dietary counseling, stimulation of salivary flow, optimization of fluoride regimens, modification of erosive beverages and adequate oral hygiene measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: This in vitro study aimed to analyze the influence of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on the efficacy of titanium tetrafluoride (TiF(4)) and sodium fluoride (NaF) varnishes and solutions to protect enamel against erosion. Background data: The effect of Nd:YAG laser irradiation on NaF and AmF was analyzed; however, there is no available data on the interaction between Nd:YAG laser irradiation and TiF(4). Methods: Bovine enamel specimens were pre-treated with NaF varnish, TiF(4) varnish, NaF solution, TiF(4) solution, placebo varnish, Nd:YAG (84.9 J/cm(2)), Nd:YAG prior to or through NaF varnish, Nd:YAG prior to or through TiF(4) varnish, Nd:YAG prior to or through NaF solution, Nd:YAG prior to or through TiF(4) solution, and Nd:YAG prior to or through placebo varnish. Controls remained untreated. Ten specimens in each group were then subjected to an erosive demineralization (Sprite Zero, 4x90 s/day) and remineralization (artificial saliva, between the erosive cycles) cycling for 5 days. Enamel loss was measured profilometrically (mu m). Additionally, treated but non-eroded specimens were additionally analyzed by scanning electron microscope (SEM) (each group n-2). The data were statistically analyzed by ANOVA and Tukey's post-hoc test (p < 0.05). Results: Only TiF(4) varnish (1.8 +/- 0.6 mu m), laser prior to TiF(4) varnish (1.7 +/- 0.3 mu m) and laser prior to TiF(4) solution (1.4 +/- 0.3 mu m) significantly reduced enamel erosion compared to the control (4.1 +/- 0.6 mu m). SEM pictures showed that specimens treated with TiF(4) varnish presented a surface coating. Conclusions: Nd:YAG laser irradiation was not effective against enamel erosion and it did not have any influence on the efficacy of F, except for TiF(4) solution. On the other hand, TiF(4) varnish protected against enamel erosion, without the influence of laser irradiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: This in vitro study aimed to analyze the influence of carbon dioxide (CO(2)) laser irradiation on the efficacy of titanium tetrafluoride (TiF(4)) and amine fluoride (AmF) in protecting enamel and dentin against erosion. Methods: Bovine enamel and dentin samples were pretreated with carbon dioxide (CO(2)) laser irradiation only (group I), TiF(4) only (1% F, group II), CO(2) laser irradiation before (group III) or through (group IV) TiF(4) application, AmF only (1% F, group V), or CO(2) laser irradiation before (group VI) or through (group VII) AmF application. Controls remained untreated. Ten samples of each group were then subjected to an erosive demineralization and remineralization cycling for 5 days. Enamel and dentin loss were measured profilometrically after pretreatment, 4 cycles (1 day), and 20 cycles (5 days) and statistically analyzed using analysis of variance and Scheffe's post hoc tests. Scanning electron microscopy (SEM) analysis was performed in pretreated but not cycled samples (two samples each group). Results: After 20 cycles, there was significantly less enamel loss in groups V and IV and significantly less dentin loss in group V only. All other groups were not significantly different from the controls. Lased surfaces (group I) appeared unchanged in the SEM images, although SEM images of enamel but not of dentin showed that CO(2) laser irradiation affected the formation of fluoride precipitates. Conclusion: AmF decreased enamel and dentin erosion, but CO(2) laser irradiation did not improve its efficacy. TiF(4) showed only a limited capacity to prevent erosion, but CO(2) laser irradiation significantly enhanced its ability to reduce enamel erosion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effects of 7-epiclusianone (7-epi) on specific virulence attributes of Streptococcus mutans in vitro and on development of dental caries in vivo. 7-Epi was obtained and purified from fruits of Rheedia brasiliensis. We investigated its influence on surface-adsorbed glucosyltransferase (Gtf) B activity, acid production, and viability of S. mutans in biofilms, as well as on caries development using a rodent model. 7-Epi (100 mu g/mL) significantly reduced the activity of surface-adsorbed GtfB (up to 48.0 +/- 1.8 of inhibition at 100 mu g/mL) and glyco-lytic pH-drop by S. mutans in biofilms (125 and 250 mu g/mL) (vs. vehicle control, p < 0.05). In contrast, the test compound did not significantly affect the bacterial viability when compared to vehicle control (15% ethanol, p > 0.05). Wistar rats treated topically with 7-epi (twice daily, 60-s exposure) showed significantly smaller number of and less severe smooth-and sulcal-surface carious lesions (p < 0.05), without reducing the S. mutans viable population from the animals` dental biofilms. In conclusion, the natural compound 7-epiclusianone may be a potentially novel pharmacological agent to prevent and control dental caries disease.