936 resultados para PEDIATRIC SUBJECTS
Resumo:
Staphylococcus aureus is highly prevalent among patients with atopic dermatitis (AD), and this pathogen may trigger and aggravate AD lesions. The aim of this study was to determine the prevalence of S. aureus in the nares of pediatric subjects and verify the phenotypic and molecular characteristics of the isolates in pediatric patients with AD. Isolates were tested for antimicrobial susceptibility, SCCmectyping, and Panton-Valentine Leukocidin (PVL) genes. Lineages were determined by pulsed-field gel electrophoresis and multilocus sequence typing (MLST). AD severity was assessed with the Scoring Atopic Dermatitis (SCORAD) index. Among 106 patients, 90 (85%) presented S. aureus isolates in their nares, and 8 also presented the pathogen in their skin infections. Two patients had two positive lesions, making a total of 10 S. aureusisolates from skin infections. Methicillin-resistant S. aureus(MRSA) was detected in 24 (26.6%) patients, and PVL genes were identified in 21 (23.3%), including 6 (75%) of the 8 patients with skin lesions but mainly in patients with severe and moderate SCORAD values (P=0.0095). All 24 MRSA isolates were susceptible to trimethoprim/sulfamethoxazole, while 8 isolates had a minimum inhibitory concentration (MIC) to mupirocin >1024 μg/mL. High lineage diversity was found among the isolates including USA1100/ST30, USA400/ST1, USA800/ST5, ST83, ST188, ST718, ST1635, and ST2791. There was a high prevalence of MRSA and PVL genes among the isolates recovered in this study. PVL genes were found mostly among patients with severe and moderate SCORAD values. These findings can help clinicians improve the therapies and strategies for the management of pediatric patients with AD.
Resumo:
The relationship between obesity and heart rate variability (HRV) has been studied in adults and adolescents, but is not determined in young pediatrics. The purpose of this study was to assess autonomic activity using HRV in a pediatric population. We hypothesized that obese children would have reduced parasympathetic and increased sympathetic activity compared to age-matched subjects. 42 pediatric subjects (ages 3-5) were classified into 3 groups based on body mass index-for-age; normal, overweight and obese. HRV and respiratory rate were recorded during 3 minute baseline, 2 minute isometric handgrip and 3 minute recovery. HRV was analyzed in the time domain [heart rate (HR), RR interval (RRI) and RRI standard deviation (RRISD)] and frequency domain [low frequency (LF), high frequency (HF) and LF/HF ratio] using repeated measures ANOVA. Spearman’s correlations were used to examine the relations between BMI and HRV at rest. Significant condition effects were found between baseline, exercise and recovery, but these responses were not significantly different between the normal, overweight and obese children. BMI was negatively correlated with LF/HF, while BMI was positively correlated with RRISD, LF, HF and nHF. Our data demonstrate that higher BMI in the pediatric population is correlated with higher parasympathetic and lower sympathetic activity. These findings are contrary to HRV responses observed in adults and adolescents, suggesting complex relationships between age, obesity and autonomic control of the heart. The data supports the concept of an age reliance of HRV and a novel relationship between adiposity and body mass index in 3-5 year olds.
Resumo:
The primary objective of this proposal was to determine whether mitochondrial oxidative stress and variation in a particular mtDNA lineage contribute to the risk of developing cortical dysplasia and are potential contributing factors in epileptogenesis in children. The occurrence of epilepsy in children is highly associated with malformations of cortical development (MCD). It appears that MCD might arise from developmental errors due to environmental exposures in combination with inherited variation in response to environmental exposures and mitochondrial function. Therefore, it is postulated that variation in a particular mtDNA lineage of children contributes to the effects of mitochondrial DNA damage on MCD phenotype. Quantitative PCR and dot blot were used to examine mitochondrial oxidative damage and single nucleotide polymorphism (SNP) in the mitochondrial genome in brain tissue from 48 pediatric intractable epilepsy patients from Miami Children’s Hospital and 11 control samples from NICHD Brain and Tissue Bank for Developmental Disorders. Epilepsy patients showed higher mtDNA copy number compared to normal health subjects (controls). Oxidative mtDNA damage was lower in non-neoplastic but higher in neoplastic epilepsy patients compared to controls. There was a trend of lower mtDNA oxidative damage in the non-neoplastic (MCD) patients compared to controls, yet, the reverse was observed in neoplastic (MCD and Non-MCD) epilepsy patients. The presence of mtDNA SNP and haplogroups did not show any statistically significant relationships with epilepsy phenotypes. However, SNPs G9804A and G9952A were found in higher frequencies in epilepsy samples. Logistic regression analysis showed no relationship between mtDNA oxidative stress, mtDNA copy number, mitochondrial haplogroups and SNP variations with epilepsy in pediatric patients. The levels of mtDNA copy number and oxidative mtDNA damage and the SNPs G9952A and T10010C predicted neoplastic epilepsy, however, this was not significant due to a small sample size of pediatric subjects. Findings of this study indicate that an increase in mtDNA content may be compensatory mechanisms for defective mitochondria in intractable epilepsy and brain tumor. Further validation of these findings related to mitochondrial genotypes and mitochondrial dysfunction in pediatric epilepsy and MCD may lay the ground for the development of new therapies and prevention strategies during embryogenesis.
Resumo:
L’infection primaire au VZV et la réactivation du VZV latent sont fréquemment observées à la suite d’une GMO ou d’une GSCO, ce qui cause de sérieuses complications chez le patient. Pour prévenir ces infections, une prophylaxie antivirale est administrée systématiquement chez tous les greffés de MO ou de SCO, alors qu’il n’existe aucun consensus sur la durée optimale d’une telle prophylaxie. Pour résoudre ce problème, notre objectif est de développer et valider une méthode ELISpot-VZV-IFN- qui permettra de suivre la reconstitution de l’immunité à médiation cellulaire anti-VZV chez les receveurs de GMO ou de GSCO et ainsi déterminer le moment opportun pour réduire ou interrompe la prophylaxie chez les receveurs de greffes de CSH. Dans un premier temps, des valeurs-seuil de la réponse à médiation cellulaire anti-VZV chez la population pédiatrique saine ont dû être générées. À la lumière de nos résultats, un enfant avec un résultat ELISpot-VZV-IFN- > 190.0 SFU/106 PBMC devrait être protégé contre une possible infection à VZV. Pour valider cette étude, une étude prospective de la reconstitution immunitaire anti-VZV a été effectuée chez 9 enfants greffés de MO ou de SCO. Nos résultats préliminaires ont montré qu’il n’y avait eu aucune reconstitution significative de l’immunité à médiation cellulaire anti-VZV dans les 18 premiers mois post-transplantation chez 8 de ces 9 enfants. Les résultats de ces expériences vont fournir d’importantes informations quant à la reconstitution de l’immunité anti-VZV à la suite d’une GMO ou d’une GSCO et pourraient permettre l’amélioration des soins apportés aux receveurs de GMO ou de GSCO.
Resumo:
Background and aim: Knowledge about the genetic factors responsible for noise-induced hearing loss (NIHL) is still limited. This study investigated whether genetic factors are associated or not to susceptibility to NIHL. Subjects and methods: The family history and genotypes were studied for candidate genes in 107 individuals with NIHL, 44 with other causes of hearing impairment and 104 controls. Mutations frequently found among deaf individuals were investigated (35delG, 167delT in GJB2, Delta(GJB6- D13S1830), Delta(GJB6- D13S1854) in GJB6 and A1555G in MT-RNR1 genes); allelic and genotypic frequencies were also determined at the SNP rs877098 in DFNB1, of deletions of GSTM1 and GSTT1 and sequence variants in both MTRNR1 and MTTS1 genes, as well as mitochondrial haplogroups. Results: When those with NIHL were compared with the control group, a significant increase was detected in the number of relatives affected by hearing impairment, of the genotype corresponding to the presence of both GSTM1 and GSTT1 enzymes and of cases with mitochondrial haplogroup L1. Conclusion: The findings suggest effects of familial history of hearing loss, of GSTT1 and GSTM1 enzymes and of mitochondrial haplogroup L1 on the risk of NIHL. This study also described novel sequence variants of MTRNR1 and MTTS1 genes.
Resumo:
Samples from 30 deaf probands exhibiting features suggestive of syndromic mitochondrial deafness or from families with maternal transmission of deafness were selected for investigation of mutations in the mitochondrial genes MT-RNR1 and MT-TS1. Patients with mutation m. 1555A>G had been previously excluded from this sample. In the MT-RNR1 gene, five probands presented the m. 827A>G sequence variant, of uncertain pathogenicity. This change was also detected in 66 subjects of an unaffected control sample of 306 Brazilian individuals from various ethnic backgrounds. Given its high frequency, we consider it unlikely to have a pathogenic role on hereditary deafness. As to the MT-TS1 gene, one proband presented the previously known pathogenic m. 7472insC mutation and three probands presented a novel variant, m. 7462C>T, which was absent from the same control sample of 306 individuals. Because of its absence in control samples and association with a family history of hearing impairment, we suggest it might be a novel pathogenic mutation.
Resumo:
Objective: The striatum, including the putamen and caudate, plays an important role in executive and emotional processing and may be involved in the pathophysiology of mood disorders. Few studies have examined structural abnormalities of the striatum in pediatric major depressive disorder (MDD) patients. We report striatal volume abnormalities in medication-naive pediatric MDD compared to healthy comparison subjects. Method: Twenty seven medication-naive pediatric Diagnostic and Statistical Manual of Mental Disorders, 4(th) edition (DSM-IV) MDD and 26 healthy comparison subjects underwent volumetric magnetic resonance imaging (MRI). The putamen and caudate volumes were traced manually by a blinded rater, and the patient and control groups were compared using analysis of covariance adjusting for age, sex, intelligence quotient, and total brain volumes. Results: MDD patients had significantly smaller right striatum (6.0% smaller) and right caudate volumes (7.4% smaller) compared to the healthy subjects. Left caudate volumes were inversely correlated with severity of depression in MDD subjects. Age was inversely correlated with left and right putamen volumes in MDD patients but not in the healthy subjects. Conclusions: These findings provide fresh evidence for abnormalities in the striatum of medication-naive pediatric MDD patients and suggest the possible involvement of the striatum in the pathophysiology of MDD.
Resumo:
Objective. To assess health-related quality of life (HRQOL) in abatacept-treated children/adolescents with juvenile idiopathic arthritis (JIA). Methods. In this phase III, double-blind, placebo-controlled trial, subjects with active polyarticular course JIA and an inadequate response/intolerance to >= 1 disease-modifying antirheumatic drug (including biologics) received abatacept 10 mg/kg plus methotrexate (MTX) during the 4-month open-label period (period A). Subjects achieving the American College of Rheumatology Pediatric 30 criteria for improvement (defined ""responders"") were randomized to abatacept or placebo (plus MTX) in the 6-month double-blind withdrawal period (period B). HRQOL assessments included 15 Child Health Questionnaire (CHQ) health concepts plus the physical (PhS) and psychosocial summary scores (PsS), pain (100-mm visual analog scale), the Children`s Sleep Habits Questionnaire, and a daily activity participation questionnaire. Results. A total of 190 subjects from period A and 122 from period B were eligible for analysis. In period A, there were substantial improvements across all of the CHQ domains (greatest improvement was in pain/discomfort) and the PhS (8.3 units) and PsS (4.3 units) with abatacept. At the end of period B, abatacept-treated subjects had greater improvements versus placebo in all domains (except behavior) and both summary scores. Similar improvement patterns were seen with pain and sleep. For participation in daily activities, an additional 2.6 school days/month and 2.3 parents` usual activity days/month were gained in period A responders with abatacept, and further gains were made in period B (1.9 versus 0.9 [P = 0.033] and 0.2 versus -1.3 [P = 0.109] school days/month and parents` usual activity days/month, respectively, in abatacept-versus placebo-treated subjects). Conclusion. Improvements in HRQOL were observed with abatacept, providing real-life tangible benefits to children with JIA and their parents/caregivers.
Resumo:
There is increasing evidence of a reciprocal fronto-limbic network in the pathogenesis of mood disorders. Prior in vivo proton ((1)H) spectroscopy studies provide evidence of abnormal neurochemical levels in the cingulate and dorsolateral prefrontal cortex (DLPFC) of adult subjects with major depressive disorder (MOD). We examined whether similar abnormalities occur in children and adolescents with MDD. We collected two-dimensional multi-voxel in vivo 1H spectroscopy data at 1.5 Tesla to quantify levels of N-acetyl-aspartate (NAA), glycerolphosphocholine plus phosphocholine (GPC + PC), and phosphocreatine plus creatine (PCr + Cr) in the DLPFC, medial prefrontal cortex (MPFC), and anterior cingulate (AC) of children and adolescents aged 8-17 years with MDD (n = 16) compared with healthy control subjects (n = 38). Analysis of covariance with age and gender as covariates was performed. MDD subjects showed significantly lower levels of NAA in the right MPFC and right AC than controls. MDD subjects also had significantly lower levels of GPC + PC in the right AC than control subjects. There were no significant differences in other metabolites in the studied regions. Pediatric patients with MDD exhibit neurochemical alterations in prefrontal cortex regions that are important in the monitoring and regulation of emotional states. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objectives The subgenual prefrontal cortex (SGPFC) is an important brain region involved in emotional regulation and reward mechanisms Volumetric abnormalities in this region have been identified in adults with bipolar disorder but thus far not in pediatric cases We examined the volume of this brain region in subjects with pediatric bipolar disorder (PBD) and compared them to healthy controls Methods Fifty one children and adolescents (mean age +/- SD 13 2 +/- 2 9 y) with DSM-IV PBD and 41 (mean age +/- SD 13 7 +/- 2 7 y) healthy comparison subjects (HC) underwent 1 5 T structural magnetic resonance imaging (MRI) brain scans We traced the SGPFC manually and compared SGPFC gray matter volumes using analysis of covariance with age gender and intracranial volume as covariates We also examined the relationship of family history of affective disorders and medication status to SGPFC volumes Results SGPFC volumes were not significantly different in PBD and HC subjects However exploratory analysis showed PBD subjects who had one or more first degree relatives with mood disorders (n = 33) had significantly smaller left hemisphere SGPFC compared to HC (p = 003 Sidak corrected) Current usage of a mood stabilizer was significantly associated with larger right SGPFC volume in PBD (F = 4 82 df = 1/41 p = 0 03) Conclusion Subjects with PBD and a close family history of mood disorders may have smaller left SGPFC volumes than HC Mood stabilizing medication may also impact SGPFC size and could have masked more subtle abnormalities overall (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Background: Formoterol is a fast-acting, long-acting beta-agonist. Its on-demand use by outpatients has been beneficial in controlling asthma. Objective: To evaluate the efficacy of formoterol as rescue medication for pediatric asthma exacerbation. Methods: A randomized, double-blind study was conducted on parallel groups involving 79 pediatric patients (mean [SD] age, 9.92 [2.5] years) with mild to moderate asthma exacerbations. They were treated with up to 3 doses of formoterol aerolizer, 12 mu g, or terbutaline Turbuhaler, 0.5 mg (dry powder inhalers). Respiratory rate, clinical score, pulse oximetry, and spirometry were analyzed at baseline and 15 minutes after administration of each bronchodilator dose. All the patients received oral prednisolone, 1 mg/kg, at study entry, followed by a single daily dose for 4 days. Forty-one patients were treated with formoterol and 38 with terbutaline. The groups were comparable in age and in severity of asthma exacerbation. Results: Both treatments resulted in similar clinical and functional improvement; 37 patients (47%) required 1 bronchodilator dose. Increases of 19.5% and 1.5.3% occurred in forced expiratory volume in 1 second in the formoterol and terbutaline groups, respectively. Therapeutic failures occurred in 2 patients. No adverse effects were observed. At 1-week follow-up, patients were stable, with pulmonary function close to normal. Conclusion: Formoterol therapy was at least as effective as terbutaline therapy in children and adolescents with mild and moderate asthma exacerbations. Ann Allergy Asthma Immunol. 2009; 103:248-253.
Resumo:
Background: Decreased signal intensity in the corpus callosum, reported in adult bipolar disorder patients, has been regarded as an indicator of abnormalities in myelination. Here we compared the callosal signal intensity of children and adolescents with bipolar disorder to that of matched healthy subjects, to investigate the hypothesis that callosal myelination is abnormal in pediatric bipolar patients. Methods: Children and adolescents with DSM-lV bipolar disorder (n=16, mean age +/- S.D. = 15.5 +/- 3.4 y) and matched healthy comparison subjects (n=21, mean age +/- S.D.=16.9 3.8 y) underwent a 1.5 T MRI brain scan. Corpus callosuin signal intensity was measured using an Apple Power Mac G4 running NIH Image 1.62 software. Results: Bipolar children and adolescents had significantly lower corpus callosum signal intensity for all callosal sub-regions (genu, anterior body, posterior body, isthmus and splenium) compared to healthy subjects (ANCOVA, all p < 0.05, age and gender as covariates). Limitations: Relatively small sample size. Conclusions: Abnormalities in corpus callosum, probably due to altered myelination during neurodevelopment, may play a role in the pathophysiology of bipolar disorder among children and adolescents. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Objective: To document the acute characteristics of swallowing impairment in a group of children post moderate/severe traumatic brain injury (TBI) by means of videofluoroscopy. Participants: Eighteen children with moderate/severe TBI. Main Outcome Measure: Videofluoroscopy at an average of 27.7 days post-injury. Results: Subjects demonstrated a range of dysphagia severity levels: mild-moderate (n = 8), moderate (n = 6), moderate-severe (n = 3), and severe (n = 1) and had a combination of oral and pharyngeal phase characteristics. More specifically; observable features or physiological impairments that were identified included reduced lingual control, hesitancy of tongue movement, repetitive tongue pumping, the presence of aspiration (including silent aspiration), delayed swallow reflex trigger, reduced laryngeal elevation and closure, and reduced peristalsis. Conclusions: These data highlight the diversity of swallowing deficits and dysphagia severity levels in children following TBI and suggest that the former are consistent with a pattern of oropharyngeal impairments.
Resumo:
The purpose of the study was to determine reference percentiles for the urinary (U) oxalate (Ox) and urate (Ura) to creatinine (Cr) concentration ratios in the second morning urine of healthy infants, children, and adolescents. The urinary oxalate and urate to creatinine ratios were determined in the spontaneously voided second morning urine sample. To test reproducibility, two urine samples were analyzed on 2 consecutive weeks in 63% of the subjects. Three hundred eighty-four healthy children (181 girls, 203 boys), aged 1 month to 17 years, from nurseries, kindergartens, and schools of Lausanne, Switzerland, were studied. The 5th and 95th percentiles were determined from the total number of urine samples (627) after confirmation that there was no order effect between repeated measurements and there were no significant sex differences. A nonlinear regression analysis in terms of age was used to smooth the calculated percentiles. In this manner, curves were obtained from which the reference values can be read at any given age. The 95th percentiles decreased with age: for UOx/Cr from 0.175 mg/mg (0.22 mol/mol) at 1 to 6 months to 0.048 mg/mg (0.06 mol/mol) from 7 years and beyond; and UUra/Cr from 2.378 mg/mg (1.6 mol/mol) at 1 to 6 months to 0.594 mg/mg (0.4 mol/mol) in adolescence. We provide 5th and 95th percentile curves for the UOx/Cr and UUra/Cr ratios determined from the second morning urine samples in a large cohort of healthy infants, children, and adolescents. Values were determined by standard analytical chemical techniques and were analyzed by powerful statistical methods. The calculated 95th percentile for the UOx/Cr values fell rather rapidly and reached normal adult values by the age of 7 years, whereas for UUra/Cr, the 95th percentile decreased slowly and stabilized in adolescence.
Resumo:
Given that highly active antiretroviral therapy (HAART) has been demonstrated useful to restore immune competence in type-1 human immunodeficiency virus (HIV-1)-infected subjects, we evaluated the specific antibody response to influenza vaccine in a cohort of HIV-1-infected children on HAART so as to analyze the quality of this immune response in patients under antiretroviral therapy. Sixteen HIV-1-infected children and 10 HIV-1 seronegative controls were immunized with a commercially available trivalent inactivated influenza vaccine containing the strains A/H1N1, A/H3N2, and B. Serum hemagglutinin inhibition (HI) antibody titers were determined for the three viral strains at the time of vaccination and 1 month later. Immunization induced a significantly increased humoral response against the three influenza virus strains in controls, and only against A/H3N2 in HIV-1-infected children. The comparison of post-vaccination HI titers between HIV-1+ patients and HIV-1 negative controls showed significantly higher HI titers against the three strains in controls. In addition, post vaccination protective HI titers (defined as equal to or higher than 1:40) against the strains A/H3N2 and B were observed in a lower proportion of HIV-1+ children than in controls, while a similar proportion of individuals from each group achieved protective HI titers against the A/H1N1 strain. The CD4+ T cell count, CD4/CD8 T cells ratio, and serum viral load were not affected by influenza virus vaccination when pre- vs post-vaccination values were compared. These findings suggest that despite the fact that HAART is efficient in controlling HIV-1 replication and in increasing CD4+ T cell count in HIV-1-infected children, restoration of immune competence and response to cognate antigens remain incomplete, indicating that additional therapeutic strategies are required to achieve a full reconstitution of immune functions.