14 resultados para PD123319
Resumo:
We determined the effects of DuP753 and PD123319 (both nonpeptides and selective antagonists of the AT(1) and AT(2) angiotensin receptors, respectively), and [Sar(1), Ala(8)]ANG II (a non-selective peptide antagonist of angiotensin receptors) on water and 3%NaCl intake induced by administration of angiotensin II (ANG II) into the paraventricular nucleus (PVN) of sodium-depleted Holtzman rats weighing 250-300 g. Twenty hours before the experiments, the rats were depleted of sodium using furosemide (10 ng/rat, sc). The volume of drug solution injected was 0.5 mu l over a period of 10-15 sec. Water and sodium intake were measured at 0.25, 0.5, 1.0 and 2.0 h. Pre-treatment with DuP753 (14 rats) at a dose of 60 ng completely abolished the water intake induced by injection of 12 ng of ANG II (15 rats) (6.4 +/- 0.6 vs 1.4 +/- 0.3 ml/2 h), where [Sar(1), Ala(8)]ANG II (12 rats) and PD123319 (10 rats) at the doses of 60 ng partially blocked water intake (6.4 +/- 0.6 vs 2.9 +/- 0.5 and 2.7 +/- 0.2 ml/2 h, respectively). In the same animals, [Sar(1), Ala(8)]ANG II, DuP753, and PD123319 blocked the sodium intake induced by ANG II (9.2 +/- 1.6 vs 3.3 +/- 0.6, 1.8 +/- 0.3, and 1.4 +/- 0.2 ml/2 h, respectively). These results indicate that both DuP753 and PD123319, administered into the PVN, blocked the water and sodium intake induced by administration of ANG II into the same site.
Resumo:
Angiotensin II (Ang II) non-peptide antagonists were injected i.c.v. (6.25-200 nmol, n = 5-8 rats/group): In sodium replete rats, losartan (AT1 receptor antagonist) induced an increase in mean arterial pressure (MAP) and in heart rate (HR) by 3rd ventricular (3rdV) injection, and a weaker pressor response and bradycardia by 4th ventricular (4thV) injection. PD123319 (AT2 receptor antagonist) induced an increase in MAP and in HR by 3rdV injection, and an increase in MAP and no alteration in HR by 4thV injection. In sodium deplete (furosemide plus removal of ambient sodium for 24 h) rats, losartan induced an increase in MAP and no alteration in HR by 3rdV injection, and no alteration in MAP and bradycardia by 4thV injection. PD123319 induced an increase in MAP and in HR by 3rdV injection, and an increase in MAP and bradycardia by 4thV injection. Thus, there was no fall in MAP by central injections of Ang II antagonists. Intravenous injection of losartan, but not of PD123319, induced a fall in MAP in both sodium replete and sodium deplete animals. Therefore, losartan and PD123319 can have similar effects on MAP and HR when injected intracerebroventricularly, although some differences are also present. The bradycardia is consistent with an withdrawal of Ang II inhibitory action on baroreflex.
Resumo:
Although most of effects of Angiotensin II (Ang II) related to cardiac remodelling can be attributed to type 1 Ang II receptor (AT(1)R), the type 2 receptor (AT(2)R) has been shown to be involved in the development of some cardiac hypertrophy models. In the present study, we investigated whether the thyroid hormone (TH) action leading to cardiac hypertrophy is also mediated by increased Ang II levels or by change on AT(1)R and AT(2)R expression, which could contribute to this effect. In addition, we also evaluated the possible contribution of AT(2)R in the activation of Akt and in the development of TH-induced cardiac hypertrophy. To address these questions, Wistar rats were treated with thyroxine (T(4), 0.1 mg/kg BW/day, i.p.), with or without AT(2)R blocker (PD123319), for 14 days. Cardiac hypertrophy was identified based on heart/body weight ratio and confirmed by analysis of atrial natriuretic factor mRNA expression. Cardiomyocyte cultures were used to exclude the influence of TH-related hemodynamic effects. Our results demonstrate that the cardiac Ang II levels were significantly increased (80%, P < 0.001) as well as the AT(2)R expression (50%, P < 0.05) in TH-induced cardiac hypertrophy. The critical involvement of AT(2)R to the development of this cardiac hypertrophy in vivo was evidenced after administration of AT(2) blocker, which was able to prevent in 40% (P < 0.01) the cardiac mass gain and the Akt activation induced by TH. The role of AT(2)R to the TH-induced cardiomyocyte hypertrophy was also confirmed after using PD123319 in the in vitro studies. These findings improve understanding of the cardiac hypertrophy observed in hyperthyroidism and provide new insights into the generation of future therapeutic strategies.
Resumo:
The aim of the present study was to analyze the role of alpha(1),alpha(2)-adrenoceptors, and the effects of losartan and PD123319 (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) injected into the paraventricular nucleus (PVN) on the diuresis, natriuresis, and kaliuresis induced by administration of adrenaline into the medial septal area (MSA). Male Holtzman rats with a stainless steel cannula implanted into the MSA and bilaterally into the PVN were used. The administration of adrenaline into the MSA increased in a dose-dependent manner the urine, sodium, and potassium excretions. The previous administration of prazosin (an alpha(1)-adrenoceptor antagonist) injected into the PVN abolished the above effects of adrenaline, whereas yohimbine (an a-adrenoceptor antagonist) doesn't affect the diuresis, natriuresis, and kaliuresis induced by adrenaline. Pretreatment with losartan into the PVN decreased in a dose-dependent manner the urine, sodium, and potassium excretions induced by MSA administration of adrenaline (50 ng), while PVN PD123319 was without effect. These results indicate that urinary and electrolyte excretion effects induced by adrenaline into the MSA are mediated primarily by PVN AT, receptors. However, the doses of losartan were more effective when combined with the doses of PD123319 than given alone, suggesting that the urinary, natriuretic, and kaliuretic effects of MSA adrenaline may involve activation of multiple angiotensin II receptors subtypes into the PVN. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
In this study we investigated the effects of the injection into the supraoptic nucleus (SON) of non-peptide AT1- and AT2-angiotensin II (ANG II) receptor antagonists, DuP753 and PD123319, as well as of the arginine-vasopressin (AVP) receptor antagonist d(CH2)5-Tyr(Me)-AVP, on water and 3% NaCl intake induced by the injection of ANG II into the medial septal area (MSA). The effects on water or 3% NaCl intake were assessed in 30-h water-deprived or in 20-h water-deprived furosemide-treated adult male rats, respectively. The drugs were injected in 0.5 µl over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. Antagonists were injected at doses of 20, 80 and 180 nmol. Water and sodium intake was measured over a 2-h period. Previous administration of the AT1 receptor antagonist DuP753 into the SON decreased water (65%, N = 10, P<0.01) and sodium intake (81%, N = 8, P<0.01) induced by the injection of ANG II (10 nmol) into the MSA. Neither of these responses was significantly changed by injection of the AT2-receptor antagonist PD123319 into the SON. on the other hand, while there was a decrease in water intake (45%, N = 9, P<0.01), ANG II-induced sodium intake was significantly increased (70%, N = 8, P<0.01) following injection of the V1-type vasopressin antagonist d(CH2)5-Tyr(Me)-AVP into the SON. These results suggest that both AT1 and V1 receptors within the SON may be involved in water and sodium intake induced by the activation of ANG II receptors within the MSA. Furthermore, they do not support the involvement of MSA AT2 receptors in the mediation of these responses.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The circumventricular structures of the central nervous system and nitric oxide are involved in arterial blood pressure control, and general anesthesia may stimulate the central renin-angiotensin system. We therefore investigated the central role of angiotensin 11 and nitric oxide on the regulation of systemic arterial blood pressure in conscious and anesthetized rats. METHODS: Rats with stainless steel cannulae implanted into their lateral ventricle were studied. We injected the AT(1) and AT(2) angiotensin 11 receptor antagonists, losartan and PD123319, L-NAME, 7-nitroindazole (nitric oxide synthetase inhibitors), and FK409 (nitric oxide donor agent) into the lateral ventricles. Mean arterial blood pressure (MAP) was recorded in conscious and zoletil-anesthetized rats. RESULTS: Mean +/- (SEM) baseline MAP was 117.5 +/- 2 mm Hg. Angiotensin II injected into the brain lateral ventricle increased MAP from 136.5 +/- 2 min Hg to 138.5 +/- 4 mm Hg (Delta 16 +/- 3 mm Hg to Delta 21 +/- 3 mm Hg) for all experimental groups versus control from 116 +/- 2 mm Hg to 120 +/- 3 mm Hg (Delta 3 +/- 1 mm Hg to A5 +/- 2 mm Hg) (P < 0.05). L-NAME or 7-nitroindazole enhanced the angiotensin II pressor effect (P < 0.05). Prior injection of losartan and PD123319 decreased the angiotensin 11 pressor effect and the enhancement effect of L-NAME and 7-nitroindazole (P < 0.05). Zoletil anesthesia did not interfere with the effects of angiotensin 11, AT,, AT2 antagonists, or nitric oxide synthetase inhibitors. CONCLUSIONS: Endogenous nitric oxide functions tonically as a central inhibitory modulator of the angiotensinergic system. AT, and AT2 receptors influence the angiotensin 11 central control of arterial blood pressure. Zoletil anesthesia did not interfere with these effects. (Anesth Analg 2007;105:1293-7)
Resumo:
Adult male rats (n = 5-7 per group) were water deprived for 24 h with only food available. Then they had access to water for 2 h. At the end of the 2 h, 1.5% NaCl was offered to the animals and the intake was measured for another 2 h. The rats drank an average of 9.8 +/- 3.0 ml/120 min of 1.5% NaCl; water intake during this time was negligible (not more than 1.0 ml/120 min). Captopril injected IP at the doses of 12 and 24 mg/kg induced 60-90% inhibition of the intake. Losartan or PD123319 injected ICV induced 50-80% inhibition of the intake. Losartan (80 nmol) inhibited the intake at a lower dose than PD123319 (160 nmol). Neither losartan nor PD123319 inhibited 10% sucrose intake. The inhibition of 1.5% NaCl intake was not related to alterations in arterial pressure. The results show that the antagonism of the renin-angiotensin system inhibits the 1.5% NaCl intake induced by water deprivation. The inhibition induced by the angiotensin II antagonists suggest that this peptide is important for the control of salt intake induced by water deprivation.
Resumo:
1. Angiotensin (Ang)II is involved in responses to hypovolaemia, such as sodium appetite and increase in blood pressure, Target areas subserving these responses for AngII include the cardiovascular system in the periphery and the circumventricular organs in the brain.2. Conflicting data have been reported for the role of systemic versus brain AngII in the mediation of sodium appetite.3. The role for systemic AngII and systemic AngII receptors in the control of blood pressure in hypovolaemia is well established. In contrast with systemic injections, i.c.v injections of AngII non-peptide AT(1) and AT(2) receptor antagonists, such as losartan and PD123319, do not reduce arterial pressure in sodium-depleted (furosemide injection plus removal of ambient sodium for 24 h) rats. Thus, brain AngII receptors are likely not important for cardiovascular responses to hypovolaemia induced by sodium depletion.4. Intracerebroventricular injections of losartan or PD 123319 increase arterial pressure when injected at relatively high doses. This hypertensive effect is unlikely to be an agonist effect on brain AngII receptors, Increases in arterial pressure produced by i.c.v, losartan are attenuated by lesions of the tissue surrounding the anterior third ventricle (AV3V). The hypertensive effect of i.c.v, AngII is abolished by lesions of the AV3V.5. Hypertension induced by AngII receptor antagonists is consistent with hypotension induced by AngII acting in the brain, However, the full physiological significance of this hypotensive effect mediated by brain AngII receptors remains to be determined.
Resumo:
We study the effects of angiotensin receptors antagonists, arginine vasopressin receptor antagonist, L-arginine and L-NAME, injected into supraoptic nucleus of the hypothalamus (SON) on sodium intake induced by the injection of angiotensin II (ANGII). Holtzman rats weighing 200-250 g with canulae implanted into the SON were used. The drugs were injected in 0.5 μL over 30-60 sec. Sodium intake after injection of saline SAL+SAL 0.15 M NaCl was 0.10±00.1 mL 2 h -1; SAL+ANGII injected into SON increased sodium intake. Losartan injected prior to ANGII into SON decreased sodium intake induced by ANGII. PD123319 injected prior to ANGII produced no changes in sodium intake induced by ANGII. AVPA receptor V 1 antagonist injected prior to ANGII reduced sodium intake with a less intensity than losartan. L-arginine injected prior to ANGII decreases sodium intake at a same intensity than losartan. L-NAME injected prior to ANGII potentiated sodium intake induced by ANGII. Losartan injected simultaneously with L-arginine prior to ANGII blocked the natriorexigenic effect of ANGII. These results confirm the importance of SON in the control of sodium intake. Also suggest that both AT 1 and arginine vasopressin V 1 receptors interact with nitrergic pathways within the SON influencing the sodium metabolism by changing sodium appetite induced by ANGII. © 2007 Asian Network for Scientific Information.
Resumo:
We determined the effects of AT 1 and AT 2 (selective no peptides antagonists angiotensin receptors), arginine vasopressin V 1 receptor antagonist as well as L-arginine, a nitric oxide donor and N W-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, injected into supraoptic nucleus (SON) on water and sodium intake induced by the injection of angiotensin II (ANGII). Male Holtzman rats weighing 200-250 g with canulae implanted into the SON were used. The drugs were injected in 0.5 μL over 30-60 sec. The water intake after injection of saline SAL+SAL 0.15 M NaCl was 0.40±0.1 mL 2 h -1; SAL+ANGII increase water intake. Losartan decreased the water intake induced by ANGII. PD123319 injected prior to produce no change in water intake induced by ANGII. AVPA prior to ANGII reduced the water intake with a less intensity than losartan. L-arginine prior to ANGII decreases the water intake at a same intensity than losartan. L-NAME prior to ANGII potentiated the dipsogenic effect of ANGII. Losartan injected simultaneously with L-arginine prior to ANGII blocked the dipsogenic effect of ANGII. These results confirm the importance of SON in the control of water intake and strongly suggest that AT 1, V 1 receptors interact with nitrergic pathways within the SON influencing the dipsogenic effect of ANGII.
Resumo:
We recently demonstrated that Angiotensin-(3-4) [Ang-(3-4)], an Ang II-derived dipeptide, overcomes inhibition of plasma membrane Ca2+-ATPase promoted by nanomolar concentrations of Ang II in basolateral membranes of renal proximal tubule cells, with involvement of a so far unknown AT(2)R-dependent and NO-independent mechanism. The present study investigates the signaling pathway triggered by Ang-(3-4) that is responsible for counteracting the inhibitory effect of Ang II, and attempts to elucidate the functional interaction of the dipeptide with Ang II at the level of AT(2)R. Stimulation by cholera toxin of G(s)alpha protein structurally linked to AT(2)R as revealed by their co-immunoprecipitation mimicked the effect of Ang-(3-4) on Ca2+-ATPase activity. Furthermore, addition of dibutyril-cAMP (db-cAMP) mimicked Ang-(3-4), whereas the specific PKA inhibitor, PKAi((5-24)) peptide, suppressed the counter-regulatory effect of Ang-(3-4) and the AT(2)R agonist, CGP42112A. Membrane-associated PKA activity was stimulated by Ang-(3-4) or CGP42112A to comparable levels as db-cAMP, and the Ang-(3-4) effect was abrogated by the AT(2)R antagonist PD123319, whereas the AT(1)R antagonist Losartan had no effect. Ang-(3-4) stimulated PKA-mediated phosphorylation of Ca2+-ATPase and activated PKA to comparable levels. Binding assays demonstrated that Ang-(3-4) could not displace H-3-Ang II from HEK 293T cells expressing AT(2)R, but 10(-10) mol/L Ang-(3-4) resulted in the appearance of a probable higher-affinity site (picomolar range) for Ang II. The results presented herein demonstrate that Ang-(3-4), acting as an allosteric enhancer, suppresses Ang II-mediated inhibition of Ca2+-ATPase through an AT(2)R/cAMP/PKA pathway, after inducing conformational changes in AT(2)R that results in generation of higher-affinity sites for Ang II. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Ferrao FM, Lara LS, Axelband F, Dias J, Carmona AK, Reis RI, Costa-Neto CM, Vieyra A, Lowe J. Exposure of luminal membranes of LLC-PK1 cells to ANG II induces dimerization of AT(1)/AT(2) receptors to activate SERCA and to promote Ca2+ mobilization. Am J Physiol Renal Physiol 302: F875-F883, 2012. First published January 4, 2012; doi:10.1152/ajprenal.00381.2011.-ANG II is secreted into the lumens of proximal tubules where it is also synthesized, thus increasing the local concentration of the peptide to levels of potential physiological relevance. In the present work, we studied the effect of ANG II via the luminal membranes of LLC-PK1 cells on Ca2+-ATPase of the sarco(endo) plasmic reticulum (SERCA) and plasma membrane (PMCA). ANG II (at concentrations found in the lumen) stimulated rapid (30 s) and persistent (30 min) SERCA activity by more than 100% and increased Ca2+ mobilization. Pretreatment with ANG II for 30 min enhanced the ANG II-induced Ca2+ spark, demonstrating a positively self-sustained stimulus of Ca2+ mobilization by ANG II. ANG II in the medium facing the luminal side of the cells decreased with time with no formation of metabolites, indicating peptide internalization. ANG II increased heterodimerization of AT(1) and AT(2) receptors by 140%, and either losartan or PD123319 completely blocked the stimulation of SERCA by ANG II. Using the PLC inhibitor U73122, PMA, and calphostin C, it was possible to demonstrate the involvement of a PLC -> DAG(PMA)-> PKC pathway in the stimulation of SERCA by ANG II with no effect on PMCA. We conclude that ANG II triggers SERCA activation via the luminal membrane, increasing the Ca2+ stock in the reticulum to ensure a more efficient subsequent mobilization of Ca2+. This first report on the regulation of SERCA activity by ANG II shows a new mechanism for Ca2+ homeostasis in renal cells and also for regulation of Ca2+-modulated fluid reabsorption in proximal tubules.
Resumo:
In kidney epithelial cells, an angiotensin II (Ang II) type 2 receptor subtype (AT2) is linked to a membrane-associated phospholipase A2 (PLA2) and the mitogen-activated protein kinase (MAPK) superfamily. However, the intervening steps in this linkage have not been determined. The aim of this study was to determine whether arachidonic acid mediates Ang II’s effect on p21ras and if so, to ascertain the signaling mechanism(s). We observed that Ang II activated p21ras and that mepacrine, a phospholipase A2 inhibitor, blocked this effect. This activation was also inhibited by PD123319, an AT2 receptor antagonist but not by losartan, an AT1 receptor antagonist. Furthermore, Ang II caused rapid tyrosine phosphorylation of Shc and its association with Grb2. Arachidonic acid and linoleic acid mimicked Ang II-induced tyrosine phosphorylation of Shc and activation of p21ras. Moreover, Ang II and arachidonic acid induced an association between p21ras and Shc. We demonstrate that arachidonic acid mediates linkage of a G protein-coupled receptor to p21ras via Shc tyrosine phosphorylation and association with Grb2/Sos. These observations have important implications for other G protein-coupled receptors linked to a variety of phospholipases.