964 resultados para PD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of the Internet on our lives has been pervasive. People are increasingly turning to the social interaction available on the Internet to satisfy their needs, whether these are professional or personal. The Internet offers users fast access to social contacts such as online chat groups and discussion lists helping us to make connections with others. Online communities are being increasingly used by teachers for professional support, guidance and inspiration. They present as a source of continuous professional development for teachers as they are able to deliver authentic and personalised opportunities for learning. This book will present the findings of a study that was conducted on three online communities for teachers. It will explore the nature of online community membership and offer some conclusions regarding their potential as a source of professional learning for teachers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flying capacitor multicell inverter (FCMI) possesses natural balancing property. With the phase-shifted (PS) carrier-based scheme, natural balancing can be achieved in a straightforward manner. However, to achieve natural balancing with the harmonically optimal phase-disposition (PD) carrierbased scheme, the conventional approaches require (n-1) x (n-1) trapezoidal carrier signals for an n-level inverter, which is (n-1) x (n-2) times more than that in the standard PD scheme. This paper proposes two improved natural balancing strategies for FMI under PD scheme, which use the same (n-1) carrier signals as used in the standard PD scheme. In the first scheme, on-line detection is performed of the band in which the modulation signal is located, corresponding period number of the carrier, and rising or falling half cycle of the carrier waveform to generate the switching signals based on certain rules. In the second strategy, the output voltage level selection is first processed and the switching signals are then generated according to a rule based on preferential cell selection algorithm. These methods are easy to use and can be simply implemented as compared to the other available methods. Simulation and experimental results are presented for a five-level inverter to verify these proposed schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inadequate vitamin D levels have been linked to bone disease but more recently have been associated with wider health implications. Limited studies suggest a high prevalence of Vitamin D deficiency in dialysis patients, although evidence is lacking on whether this is due to dietary restrictions, limited mobility and time outdoors or a combination of these. The aim of this study was to assess the contributions of diet, supplements and sunlight exposure to serum Vitamin D (25(OH)D) levels in dialysis patients. Cross-sectional data were obtained from 30 PD (Mean±SD age 56.9±16.2 y; n=13 male) and 22 HD (Mean±SD age 65.4±14.0 y; n=18 male) patients between 2009 and 2010. Serum 25(OH)D was measured and oral vitamin D intake estimated through a food-frequency-questionnaire and quantifying inactive supplementation. Sunlight exposure was assessed using a validated questionnaire. Prevalence of inadequate/insufficient vitamin D differed between dialysis modality (31% and 43% insufficient (<50nmol/L); 4% and 34% deficient (<25nmol/L) in HD and PD patients respectively (p=0.002)). In HD patients, there was a significant correlation between diet plus supplemental vitamin D intake and 25(OH)D (ρ=0.84, p<0.001). Results suggest a higher frequency of 25(OH)D inadequacy/deficiency in PD compared to HD patients. No other relationships between intake, sun exposure and 25(OH)D were seen. This could reflect limitations of the study design or the importance of other factors such as age, ethnicity and sun protection as interactions in the analysis. Understanding these factors is important given Vitamin D’s emerging status as a biomarker of systemic ill health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A characteristic of Parkinson's disease (PD) is the development of tremor within the 4–6 Hz range. One method used to better understand pathological tremor is to compare the responses to tremor-type actions generated intentionally in healthy adults. This study was designed to investigate the similarities and differences between voluntarily generated 4–6 Hz tremor and PD tremor in regards to their amplitude, frequency and coupling characteristics. Tremor responses for 8 PD individuals (on- and off-medication) and 12 healthy adults were assessed under postural and resting conditions. Results showed that the voluntary and PD tremor were essentially identical with regards to the amplitude and peak frequency. However, differences between the groups were found for the variability (SD of peak frequency, proportional power) and regularity (Approximate Entropy, ApEn) of the tremor signal. Additionally, coherence analysis revealed strong inter-limb coupling during voluntary conditions while no bilateral coupling was seen for the PD persons. Overall, healthy participants were able to produce a 5 Hz tremulous motion indistinguishable to that of PD patients in terms of peak frequency and amplitude. However, differences in the structure of variability and level of inter-limb coupling were found for the tremor responses of the PD and healthy adults. These differences were preserved irrespective of the medication state of the PD persons. The results illustrate the importance of assessing the pattern of signal structure/variability to discriminate between different tremor forms, especially where no differences emerge in standard measures of mean amplitude as traditionally defined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogenation kinetics of Mg is slow, impeding its application for mobile hydrogen storage. We demonstrate by ab initio density functional theory (DFT) calculations that the reaction path can be greatly modified by adding transition metal catalysts. Contrasting with Ti doping, a Pd dopant will result in a very small activation barrier for both dissociation of molecular hydrogen and diffusion of atomic H on the Mg surface. This new computational finding supports for the first time by ab initio simulationthe proposed hydrogen spillover mechanism for rationalizing experimentally observed fast hydrogenation kinetics for Pd-capped Mg materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid electrochemical method based on using a clean hydrogen-bubble template to form a bimetallic porous honeycomb Cu/Pd structure has been investigated. The addition of palladium salt to a copper-plating bath under conditions of vigorous hydrogen evolution was found to influence the pore size and bulk concentration of copper and palladium in the honeycomb bimetallic structure. The surface was characterised by X-ray photoelectron spectroscopy, which revealed that the surface of honeycomb Cu/Pd was found to be rich with a Cu/Pd alloy. The inclusion of palladium in the bimetallic structure not only influenced the pore size, but also modified the dendritic nature of the internal wall structure of the parent copper material into small nanometre-sized crystallites. The chemical composition of the bimetallic structure and substantial morphology changes were found to significantly influence the surface-enhanced Raman spectroscopic response for immobilised rhodamine B and the hydrogen-evolution reaction. The ability to create free-standing films of this honeycomb material may also have many advantages in the areas of gas- and liquid-phase heterogeneous catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a participatory design research framework as a primary method for structuring youth engagement, participation and contribution to the design, development and usability evaluation of three evidencebased e-tools for wellbeing, which include smart phone mobile apps as well as e-health websites. The three projects are part of a series of six e-tools part of Safe and Supportive program under Young and Well CRC. The participatory design method, developed by Zelenko (2012) for application in design of online health promoting technologies, was further piloted in partnership with Inspire USA for specific application within the CRC, deploying a combination of creative design workshops and speculative design activities in developing e-tool prototypes with young people. This paper presents the resulting participatory research framework as it was implemented across the e-tool projects to facilitate active youth participation in co-designing the e-tools and ensuring the final designs are relevant to young people and deliver health messages in engaging ways. The principles of Participatory Design (PD) that inform the new framework include a high degree of participant agency in creative decisionmaking and a commitment to the process of co-designing, with young people working alongside designers and developers. The paper will showcase how the PD framework was applied across three projects to increase young people’s contribution to final design outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of imines from amines and aliphatic alcohols (C1–C6) in the presence of base on supported palladium nanoparticles has been achieved for the first time. The catalytic system shows high activity and selectivity in open air at room temperature. As an example of the isostructural Ln3Sb3Co2O14 (Ln: La, Pr, Nd, Sm—Ho) series with an ordered pyrochlore structure, the La variant is prepared by a citrate complex method employing stoichiometric amounts of La(NO3)3, Co(NO3)2, and Sb tartrate together with citric acid with a metal/citrate molar ratio of 1:2

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical formation of nanostructured materials is generally achieved by reduction of a metal salt onto a substrate that does not influence the composition of the deposit. In this work we report that Ag, Au and Pd electrodeposited onto Cu under conditions where galvanic replacement is not viable and hydrogen gas is evolved results in the formation of nanostructured surfaces that unexpectedly incorporate a high concentration of Cu in the final material. Under cathodic polarization conditions the electrodissolution/corrosion of Cu occurs which provides a source of ionic copper that is reduced at the surface-electrolyte interface. The nanostructured Cu/M (M = Ag, Au and Pd) surfaces are investigated for their catalytic activity for the reduction of 4 nitrophenol by NaBH4 where Cu/Ag was found to be extremely active. This work indicates that a substrate electrode can be utilized in an interesting manner t make bimetallic nanostructures with enhanced catalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, dynamic modeling and simulation of the hydropurification reactor in a purified terephthalic acid production plant has been investigated by gray-box technique to evaluate the catalytic activity of palladium supported on carbon (0.5 wt.% Pd/C) catalyst. The reaction kinetics and catalyst deactivation trend have been modeled by employing artificial neural network (ANN). The network output has been incorporated with the reactor first principle model (FPM). The simulation results reveal that the gray-box model (FPM and ANN) is about 32 percent more accurate than FPM. The model demonstrates that the catalyst is deactivated after eleven months. Moreover, the catalyst lifetime decreases about two and half months in case of 7 percent increase of reactor feed flowrate. It is predicted that 10 percent enhancement of hydrogen flowrate promotes catalyst lifetime at the amount of one month. Additionally, the enhancement of 4-carboxybenzaldehyde concentration in the reactor feed improves CO and benzoic acid synthesis. CO is a poison to the catalyst, and benzoic acid might affect the product quality. The model can be applied into actual working plants to analyze the Pd/C catalyst efficient functioning and the catalytic reactor performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pharmacology is the science underpinning dosing, mechanisms of action and effectiveness of drugs. Central to pharmacology, are the studies of pharmacokinetics (PK) and pharmacodynamics (PD). On one hand, PK defines the time-course of drug concentrations in the body and incorporates the broad concepts of drug absorption, distribution, metabolism and elimination. On the other hand, PD describes the relationship between drug concentrations and pharmacological effects. In practice, PK is often referred as “what the body does to the drug” whilst PD as “what the drug does to the body”. Thus, PK/PD describes the relationship between drug dose and pharmacological effects with changes in drug concentrations leading to different pharmacological effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We find that visible light irradiation of gold–palladium alloy nanoparticles supported on photocatalytically inert ZrO2 significantly enhances their catalytic activity for oxidant-free dehydrogenation of aromatic alcohols to the corresponding aldehydes at ambient temperatures. Dehydrogenation is also the dominant process in the selective oxidation of the alcohols to the corresponding aldehydes with molecular oxygen. The alloy nanoparticles strongly absorb light and exhibit superior catalytic and photocatalytic activity when compared to either pure palladium or gold nanoparticles. Analysis with a free electron gas model for the bulk alloy structure reveals that the alloying increases the surface charge heterogeneity on the alloy particle surface, which enhances the interaction between the alcohol molecules and the metal NPs. The increased surface charge heterogeneity of the alloy particles is confirmed with density function theory applied to small alloy clusters. Optimal catalytic activity was observed with a Au : Pd molar ratio of 1 : 186, which is in good agreement with the theoretical analysis. The rate-determining step of the dehydrogenation is hydrogen abstraction. The conduction electrons of the nanoparticles are photo-excited by the incident light giving them the necessary energy to be injected into the adsorbed alcohol molecules, promoting the hydrogen abstraction. The strong chemical adsorption of alcohol molecules facilitates this electron transfer. The results show that the alloy nanoparticles efficiently couple thermal and photonic energy sources to drive the dehydrogenation. These findings provide useful insight into the design of catalysts that utilize light for various organic syntheses at ambient temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alloy nanoparticles (NPs) of gold and palladium on ZrO2 support (Au–Pd@ZrO2) were found to be highly active in oxidation of benzyl alcohols and can be used for the tandem synthesis of imines from benzyl alcohols and amines via a one-pot, two-step process at mild reaction conditions. The first step of the process is oxidation of benzyl alcohol to benzaldehyde, excellent yields were achieved after 7 h reaction at 40 °C without addition of any base. In the second step, aniline was introduced into the reaction system to produced N-benzylideneaniline. The benzaldehyde obtained in the first step was completely consumed within 1 h. A range of benzyl alcohols and amines were investigated for the general applicability of the Au–Pd alloy catalysts. It is found that the performance of the catalysts depends on the Au–Pd metal contents and composition. The optimal catalyst is 3.0 wt% Au–Pd@ZrO2 with a Au:Pd molar ratio 1:1. The alloy NP catalyst exhibited superior catalytic properties to pure AuNP or PdNP because the surface of alloy NPs has higher charge heterogeneity than that of pure metal NPs according to simulation of density function theory (DFT)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report herein highly efficient photocatalysts comprising supported nanoparticles (NPs) of gold (Au) and palladium (Pd) alloys, which utilize visible light to catalyse the Suzuki cross-coupling reactions at ambient temperature. The alloy NPs strongly absorb visible light, energizing the conduction electrons of NPs which produce highly energetic electrons at the surface sites. The surface of the energized NPs activates the substrates and these particles exhibit good activity on a range of typical Suzuki reaction combinations. The photocatalytic efficiencies strongly depend on the Au:Pd ratio of the alloy NPs, irradiation light intensity and wavelength. The results show that the alloy nanoparticles efficiently couple thermal and photonic energy sources to drive Suzuki reactions. Results of the density functional theory (DFT) calculations indicate that transfer of the light-excited electrons from the nanoparticle surface to the reactant molecules adsorbed on the nanoparticle surface activates the reactants. The knowledge acquired in this study may inspire further studies of new efficient photocatalysts and a wide range of organic syntheses driven by sunlight.