921 resultados para PCR fluorescente
Resumo:
This study was performed in order to evaluate the detection limit of PCR with fluorescent capillary electrophoresis for Brucella abortus diagnosis in bovine semen. Negative bovine semen samples were artificially contaminated with B. abortus (10(0) to 10(7) bacteria/mL) and DNA was extracted by phenol/chloroform protocol. DNA was amplified by PCR with oligonucleotides previously described BF-5'gcgctcaggctgccgacgcaa3' (6-FAM labeled) and BR-5'accagccattgcggtcggta3' for B. abortus. Oligonucleotides generated DNA fragments of 193 bp. DNA fragments visualization was done under UV light at silver stained 8% poliacrylamide gel, and fluorescent capillary electrophoresis performed in an automatic DNA fragment analyzer. The detection limit of capillary electrophoresis for B. abortus was 10³ bacteria/mL, while for silver stained 8% poliacrylamide gel it was 10(5) bacteria/mL. PCR with fluorescent capillary electrophoresis is fast, efficient and highly sensitive test for DNA detection of Brucella in bovine semen, and itcan be an important tool for health evaluation of the herd and semen sanitary control in artificial insemination centers.
Resumo:
Este estudo teve como objetivo avaliar o limiar de detecção da técnica de PCR multiplex fluorescente aliada a eletroforese capilar na detecção de agentes infecciosos em amostras de sêmen experimentalmente contaminadas com concentrações decrescentes das bactérias Brucella abortus, Leptospira interrogans sorovar pomona, Campylobacter fetus e Haemophilus somnus. Amostras de sêmen bovino foram experimentalmente contaminadas com concentrações decrescentes de bactérias obtidas através de diluições seriadas na base 10 de modo a obter-se amostras contendo desde 1 vez até 10-7 bactérias/mL a partir da concentração inicial de Leptospira pomona, Brucella abortus, Campylobacter fetus e Haemophilus somnus. As diluições foram efetuadas individualmente para cada bactéria, bem como nas diferentes concentrações necessárias para a padronização do teste de multiplex PCR. As extrações de DNA de todas as soluções contendo espermatozóides e bactérias analisadas no presente estudo foram realizadas segundo protocolo descrito por Heinemann et al. (2000). Os produtos de PCR multiplex foram avaliados por eletroforese em gel de poliacrilamida 8% e separação eletroforética por sistema capilar em equipamento automático de análise de fragmentos de DNA MegaBace. Observou-se a amplificação de fragmentos de 193pb, 330pb, 400pb e 415pb a partir do DNA de B. abortus, L. pomona, H. somnus, C. fetus, respectivamente. Na análise por eletroforese capilar de produtos da PCR multiplex do DNA para detecção simultânea dos quatro patógenos observou-se a sinal de positividade até a diluição de 10-3 bactérias/mL vezes da concentração inicial da solução estoque de cada bactéria. A técnica de PCR multiplex aliada à eletroforese capilar foi usada pela primeira vez para o diagnóstico direto de quatro bactérias patogênicas no sêmen, demonstrando ser um método rápido na detecção de bactérias causadoras de doenças reprodutivas.
Resumo:
334 p.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study was performed in order to evaluate the detection limit of PCR with fluorescent capillary electrophoresis for Leptospira pomona diagnosis in bovine semen. Negative bovine semen samples were artificially contaminated with Leptospira pomona (10 0 to 10 7 bacteria/ ml) and DNA was extracted by phenol/chloroform protocol. DNA fragments visualization was done by three electrophoresis methods: under UV light in 2 % agarose gel, silver staining 8% polyacrylamide gel and fluorescent capillary electrophoresis. The detection limit of capillary electrophoresis for Leptospira pomona was 10 2bacteria/ml. Under UV light, in 2 % agarose gel, the detection limit was of 10 4 bacteria/ ml while for silver stained 8 % polyacrylamide gel it was 10 2 bacteria/ ml. PCR with fluorescent capillary electrophoresis is an efficient and rapid diagnostic test for DNA detection of Leptospira in bovine semen and this can be an important tool for herd and semen sanitary control in artificial insemination centers.
Resumo:
The prevalence and concentrations of Campylobacter jejuni, Salmonella spp. and enterohaemorrhagic E. coli (EHEC) were investigated in surface waters in Brisbane, Australia using quantitative PCR (qPCR) based methodologies. Water samples were collected from Brisbane City Botanic Gardens (CBG) Pond, and two urban tidal creeks (i.e., Oxley Creek and Blunder Creek). Of the 32 water samples collected, 8 (25%), 1 (3%), 9 (28%), 14 (44%), and 15 (47%) were positive for C. jejuni mapA, Salmonella invA, EHEC O157 LPS, EHEC VT1, and EHEC VT2 genes, respectively. The presence/absence of the potential pathogens did not correlate with either E. coli or enterococci concentrations as determined by binary logistic regression. In conclusion, the high prevalence, and concentrations of potential zoonotic pathogens along with the concentrations of one or more fecal indicators in surface water samples indicate a poor level of microbial quality of surface water, and could represent a significant health risk to users. The results from the current study would provide valuable information to the water quality managers in terms of minimizing the risk from pathogens in surface waters.
Resumo:
The host specificity of the five published sewage-associated Bacteroides markers (i.e., HF183, BacHum, HuBac, BacH and Human-Bac) was evaluated in Southeast Queensland, Australia by testing fecal DNA samples (n = 186) from 11 animal species including human fecal samples collected via influent to a sewage treatment plant (STP). All human fecal samples (n = 50) were positive for all five markers indicating 100% sensitivity of these markers. The overall specificity of the HF183 markers to differentiate between humans and animals was 99%. The specificities of the BacHum and BacH markers were > 94%, suggesting that these markers are suitable for sewage pollution in environmental waters in Australia. The BacHum (i.e., 63% specificity) and Human-Bac (i.e., 79% specificity) markers performed poorly in distinguishing between the sources of human and animal fecal samples. It is recommended that the specificity of the sewage-associated markers must be rigorously tested prior to its application to identify the sources of fecal pollution in environmental waters.
Resumo:
Aims: Influenza is commonly spread by infectious aerosols; however, detection of viruses in aerosols is not sensitive enough to confirm the characteristics of virus aerosols. The aim of this study was to develop an assay for respiratory viruses sufficiently sensitive to be used in epidemiological studies. Method: A two-step, nested real-time PCR assay was developed for MS2 bacteriophage, and for influenza A and B, parainfluenza 1 and human respiratory syncytial virus. Outer primer pairs were designed to nest each existing real-time PCR assay. The sensitivities of the nested real-time PCR assays were compared to those of existing real-time PCR assays. Both assays were applied in an aerosol study to compare their detection limits in air samples. Conclusions: The nested real-time PCR assays were found to be several logs more sensitive than the real-time PCR assays, with lower levels of virus detected at lower Ct values. The nested real-time PCR assay successfully detected MS2 in air samples, whereas the real-time assay did not. Significance and Impact of the Study: The sensitive assays for respiratory viruses will permit further research using air samples from naturally generated virus aerosols. This will inform current knowledge regarding the risks associated with the spread of viruses through aerosol transmission.
Resumo:
Staphylococcus aureus is a common pathogen that causes a variety of infections including soft tissue infections, impetigo, septicemia toxic shock and scalded skin syndrome. Traditionally, Methicillin-Resistant Staphylococcus aureus (MRSA) was considered a Hospital-Acquired (HA) infection. It is now recognised that the frequency of infections with MRSA is increasing in the community, and that these infections are not originating from hospital environments. A 2007 report by the Centers for Disease Control and Prevention (CDC) stated that Staphylococcus aureus is the most important cause of serious and fatal infections in the USA. Community-Acquired MRSA (CA-MRSA) are genetically diverse and distinct, meaning they are able to be identified and tracked by way of genotyping. Genotyping of MRSA using Single nucleotide polymorphisms (SNPs) is a rapid and robust method for monitoring MRSA, specifically ST93 (Queensland Clone) dissemination in the community. It has been shown that a large proportion of CA-MRSA infections in Queensland and New South Wales are caused by ST93. The rationale for this project was that SNP analysis of MLST genes is a rapid and cost-effective method for genotyping and monitoring MRSA dissemination in the community. In this study, 16 different sequence types (ST) were identified with 41% of isolates identified as ST93 making it the predominate clone. Males and Females were infected equally with an average patient age of 45yrs. Phenotypically, all of the ST93 had an identical antimicrobial resistance pattern. They were resistant to the β-lactams – Penicillin, Flu(di)cloxacillin and Cephalothin but sensitive to all other antibiotics tested. Virulence factors play an important role in allowing S. aureus to cause disease by way of colonising, replication and damage to the host. One virulence factor of particular interest is the toxin Panton-Valentine leukocidin (PVL), which is composed of two separate proteins encoded by two adjacent genes. PVL positive CA-MRSA are shown to cause recurrent, chronic or severe skin and soft tissue infections. As a result, it is important that PVL positive CA-MRSA is genotyped and tracked. Especially now that CA-MRSA infections are more prevalent than HA-MRSA infections and are now deemed endemic in Australia. 98% of all isolates in this study tested positive for the PVL toxin gene. This study showed that PVL is present in many different community based ST, not just ST93, which were all PVL positive. With this toxin becoming entrenched in CA-MRSA, genotyping would provide more accurate data and a way of tracking the dissemination. PVL gene can be sub-typed using an allele-specific Real-Time PCR (RT-PCR) followed by High resolution meltanalysis. This allows the identification of PVL subtypes within the CA-MRSA population and allow the tracking of these clones in the community.
Resumo:
This paper aimed to assess the magnitude of sewage pollution in an urban lake in Dhaka, Bangladesh by using Quantitative PCR (qPCR) of sewage-associated Bacteroides HF183 markers. PCR was also used for the quantitative detection of ruminant wastewater-associated CF128 markers along with the enumeration of traditional fecal indicator bacteria, namely, enterococci. The number of enterococci in lake water samples ranged from 1.1 x 104 to 1.9 x 105 CFU/100 ml of water. From the 20 water samples tested, 14 (70%) and 7 (35%) were PCR positive for the HF183 and CF128 markers, respectively. The numbers of the HF183 and CF128 markers in lake water samples were 3.9 x 104 to 6.3 × 107 and 9.3 x 103 to 6.3 x 105 genomic units (GU)/100 ml of water, respectively. The high numbers of enterococci and the HF183 markers indicate sewage pollution and potential health risks to those who use the lake water for non-potable purposes such as bathing and washing clothes. This is the first study that investigated the presence of microbial source tracking (MST) markers in Dhaka, Bangladesh where diarrhoeal diseases is one of the major causes of childhood mortality. The molecular assay as used in this study can provide valuable information on the extent of sewage pollution, thus facilitating the development of robust strategies to minimise potential health risks.
Resumo:
In total, 782 Escherichia coli strains originating from various host sources have been analyzed in this study by using a highly discriminatory single-nucleotide polymorphism (SNP) approach. A set of eight SNPs, with a discrimination value (Simpson's index of diversity [D]) of 0.96, was determined using the Minimum SNPs software, based on sequences of housekeeping genes from the E. coli multilocus sequence typing (MLST) database. Allele-specific real-time PCR was used to screen 114 E. coli isolates from various fecal sources in Southeast Queensland (SEQ). The combined analysis of both the MLST database and SEQ E. coli isolates using eight high-D SNPs resolved the isolates into 74 SNP profiles. The data obtained suggest that SNP typing is a promising approach for the discrimination of host-specific groups and allows for the identification of human-specific E. coli in environmental samples. However, a more diverse E. coli collection is required to determine animal- and environment-specific E. coli SNP profiles due to the abundance of human E. coli strains (56%) in the MLST database.
Resumo:
Introduction The ability to screen blood of early stage operable breast cancer patients for circulating tumour cells is of potential importance for identifying patients at risk of developing distant relapse. We present the results of a study of the efficacy of the immunobead RT-PCR method in identifying patients with circulating tumour cells. Results Immunomagnetic enrichment of circulating tumour cells followed by RT-PCR (immunobead RT-PCR) with a panel of five epithelial specific markers (ELF3, EPHB4, EGFR, MGB1 and TACSTD1) was used to screen for circulating tumour cells in the peripheral blood of 56 breast cancer patients. Twenty patients were positive for two or more RT-PCR markers, including seven patients who were node negative by conventional techniques. Significant increases in the frequency of marker positivity was seen in lymph node positive patients, in patients with high grade tumours and in patients with lymphovascular invasion. A strong trend towards improved disease free survival was seen for marker negative patients although it did not reach significance (p = 0.08). Conclusion Multi-marker immunobead RT-PCR analysis of peripheral blood is a robust assay that is capable of detecting circulating tumour cells in early stage breast cancer patients.
Resumo:
PCR-based cancer diagnosis requires detection of rare mutations in k- ras, p53 or other genes. The assumption has been that mutant and wild-type sequences amplify with near equal efficiency, so that they are eventually present in proportions representative of the starting material. Work on factor IX suggests that this assumption is invalid for one case of near- sequence identity. To test the generality of this phenomenon and its relevance to cancer diagnosis, primers distant from point mutations in p53 and k-ras were used to amplify wild-type and mutant sequences from these genes. A substantial bias against PCR amplification of mutants was observed for two regions of the p53 gene and one region of k-ras. For k-ras and p53, bias was observed when the wild-type and mutant sequences were amplified separately or when mixed in equal proportions before PCR. Bias was present with proofreading and non-proofreading polymerase. Mutant and wild-type segments of the factor V, cystic fibrosis transmembrane conductance regulator and prothrombin genes were amplified and did not exhibit PCR bias. Therefore, the assumption of equal PCR efficiency for point mutant and wild-type sequences is invalid in several systems. Quantitative or diagnostic PCR will require validation for each locus, and enrichment strategies may be needed to optimize detection of mutants.