974 resultados para PCR and real time PCR
Resumo:
The prognosis of glioblastomas is still extremely poor and the discovery of novel molecular therapeutic targets can be important to optimize treatment strategies. Gene expression analyses comparing normal and neoplastic tissues have been used to identify genes associated with tumorigenesis and potential therapeutic targets. We have used this approach to identify differentially expressed genes between primary glioblastomas and non-neoplastic brain tissues. We selected 20 overexpressed genes related to cell cycle, cellular movement and growth, proliferation and cell-to-cell signaling and analyzed their expression levels by real time quantitative PCR in cDNA obtained from microdissected fresh tumor tissue from 20 patients with primary glioblastomas and from 10 samples of non-neoplastic white matter tissue. The gene expression levels were significantly higher in glioblastomas than in non-neoplastic white matter in 18 out of 20 genes analyzed: P < 0.00001 for CDKN2C, CKS2, EEF1A1, EMP3, PDPN, BNIP2, CA12, CD34, CDC42EP4, PPIE, SNAI2, GDF15 and MMP23b; and NFIA (P: 0.0001), GPS1 (P: 0.0003), LAMA1 (P: 0.002), STIM1 (P: 0.006), and TASP1 (P: 0.01). Five of these genes are located in contiguous loci at 1p31-36 and 2 at 17q24-25 and 8 of them encode surface membrane proteins. PDPN and CD34 protein expression were evaluated by immunohistochemistry and they showed concordance with the PCR results. The present results indicate the presence of 18 overexpressed genes in human primary glioblastomas that may play a significant role in the pathogenesis of these tumors and that deserve further functional investigation as attractive candidates for new therapeutic targets.
Resumo:
The dynamics of porcine circovirus type 2 (PCV2) shedding in semen of naturally infected boars was studied. Semen was collected serially each 15 or 20 days during 62 days from 5 boars from a herd and from 11 boars from an artificial insemination center. All boars were positive for PCV2 DNA by nested polymerase chain reaction of raw semen in at least two sampling dates, and most of them had detectable shedding in all sampling dates. Real-time quantitative PCR was performed in 23 samples. All samples showed low amounts of PCV2 DNA, ranging from 98 to 652 PCV2 copies/mL. No differences between the frequencies of PCV2 DNA shed in semen were found considering herds and age of boars. PCV2 shedding in the semen can occur continuously or intermittently up to 60 days in naturally infected boars at 12 to 42 months old in absence of PCV2 clinical signs. These results demonstrate sporadic and long-term shedding patterns of low amounts of PCV2 DNA in semen from naturally infected boars.
Resumo:
The increasing presence of products derived from genetically modified (GM) plants in human and animal diets has led to the development of detection methods to distinguish biotechnology-derived foods from conventional ones. The conventional and real-time PCR have been used, respectively, to detect and quantify GM residues in highly processed foods. DNA extraction is a critical step during the analysis process. Some factors such as DNA degradation, matrix effects, and the presence of PCR inhibitors imply that a detection or quantification limit, established for a given method, is restricted to a matrix used during validation and cannot be projected to any other matrix outside the scope of the method. In Brazil, sausage samples were the main class of processed products in which Roundup Ready® (RR) soybean residues were detected. Thus, the validation of methodologies for the detection and quantification of those residues is absolutely necessary. Sausage samples were submitted to two different methods of DNA extraction: modified Wizard and the CTAB method. The yield and quality were compared for both methods. DNA samples were analyzed by conventional and real-time PCR for the detection and quantification of Roundup Ready® soybean in the samples. At least 200 ng of total sausage DNA was necessary for a reliable quantification. Reactions containing DNA amounts below this value led to large variations on the expected GM percentage value. In conventional PCR, the detection limit varied from 1.0 to 500 ng, depending on the GM soybean content in the sample. The precision, performance, and linearity were relatively high indicating that the method used for analysis was satisfactory.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A importância do cão como reservatório de L. infantum chagasi no meio urbano tem estimulado a realização de inúmeros trabalhos de avaliação de técnicas de diagnóstico, uma vez que este procedimento, quando realizado corretamente, torna-se um importante passo na prevenção da doença em humanos. Dentre os métodos de diagnóstico, as técnicas moleculares têm adquirido destaque. Objetivou-se neste trabalho verificar o desempenho da Reação em Cadeia da Polimerase (PCR) e da PCR em tempo real (qPCR) para diagnóstico da Leishmaniose Visceral Canina (LVC) utilizando diferentes amostras biológicas. Para tanto foram utilizados 35 cães provenientes de uma área endêmica para LVC, onde foram utilizados para o diagnóstico molecular, aspirado de medula óssea, fragmentos de linfonodo e baço. Neste estudo a qPCR foi capaz de detectar um maior número de animais positivos quando comparada com a PCR. Já entre as diferentes amostras biológicas utilizadas não foi observada diferença significativa na detecção de DNA de L. infantumchagasi por meio da PCR e qPCR. Mesmo assim, considerando a facilidade de obtenção, o linfonodo pode ser considerada como a melhor amostra para diagnóstico molecular da infecção por L. infantum chagasi.
Resumo:
Besnoitia besnoiti, an apicomplexan protozoan parasite, is the causative agent of bovine besnoitiosis. This infection may dramatically affect body condition, and, in males, lead to irreversible infertility. While identification of clinical cases and their histopathological confirmation is relatively simple to carry out, finding subclinical forms of infection is more difficult, thus a more sensitive test for the identification of the etiological agent may be an appropriate diagnostic tool. We have developed the ITS1 rDNA-sequence-based conventional and real-time PCR which are highly sensitive and specific for the detection of B. besnoiti infection in cattle. A recombinant internal positive control was introduced to assess possible sample-related inhibitory effects during the amplification reaction and, in order to prevent false-positive results, a pre-PCR treatment of potentially contaminating dU-containing PCR product with uracil-DNA-glycosylase (UDG) was followed.
Resumo:
BACKGROUND: Culture-independent methods based on the 16S ribosomal RNA molecule are nowadays widely used for assessment of the composition of the intestinal microbiota, in relation to host health or probiotic efficacy. Because Bifidobacterium thermophilum was only recently isolated from human faeces until now, no specific real-time PCR (qPCR) assay has been developed for detection of this species as component of the bifidobacterial community of the human intestinal flora. RESULTS: Design of specific primers and probe was achieved based on comparison of 108 published bifidobacterial 16S rDNA sequences with the recently published sequence of the human faecal isolate B. thermophilum RBL67. Specificity of the primer was tested in silico by similarity search against the sequence database and confirmed experimentally by PCR amplification on 17 Bifidobacterium strains, representing 12 different species, and two Lactobacillus strains. The qPCR assay developed was linear for B. thermophilum RBL67 DNA quantities ranging from 0.02 ng/microl to 200 ng/microl and showed a detection limit of 10(5) cells per gram faeces. The application of this new qPCR assay allowed to detect the presence of B. thermophilum in one sample from a 6-month old breast-fed baby among 17 human faecal samples tested. Additionally, the specific qPCR primers in combination with selective plating experiments led to the isolation of F9K9, a faecal isolate from a 4-month old breast-fed baby. The 16S rDNA sequence of this isolate is 99.93% similar to that of B. thermophilum RBL67 and confirmed the applicability of the new qPCR assay in faecal samples. CONCLUSION: A new B. thermophilum-specific qPCR assay was developed based on species-specific target nucleotides in the 16S rDNA. It can be used to further characterize the composition of the bifidobacterial community in the human gastrointestinal tract. Until recently, B. thermophilum was considered as a species of animal origin, but here we confirm with the application of this new PCR assay the presence of B. thermophilum strains in the human gut.
Resumo:
The reliable quantification of gene copy number variations is a precondition for future investigations regarding their functional relevance. To date, there is no generally accepted gold standard method for copy number quantification, and methods in current use have given inconsistent results in selected cohorts. In this study, we compare two methods for copy number quantification. beta-defensin gene copy numbers were determined in parallel in 80 genomic DNA samples by real-time PCR and multiplex ligation-dependent probe amplification (MLPA). The pyrosequencing-based paralog ratio test (PPRT) was used as a standard of comparison in 79 out of 80 samples. Realtime PCR and MPLA results confirmed concordant DEFB4, DEFB103A, and DEFB104A copy numbers within samples. These two methods showed identical results in 32 out of 80 samples; 29 of these 32 samples comprised four or fewer copies. The coefficient of variation of MLPA is lower compared with PCR. In addition, the consistency between MLPA and PPRT is higher than either PCR/MLPA or PCR/PPRT consistency. In summary, these results suggest that MLPA is superior to real-time PCR in beta-defensin copy number quantification.
Resumo:
This study aimed to evaluate the use of conventional polymerase chain reaction (cPCR) and real-time quantitative PCR (qPCR) in the diagnosis of human strongyloidiasis from stool samples in tropical areas. Stool samples were collected from individuals and were determined to be positive for Strongyloides stercoralis (group I), negative for S. stercoralis (group II) and positive for other enteroparasite species (group III). DNA specific to S. stercoralis was found in 76.7% of group I samples by cPCR and in 90% of group I samples by qPCR. The results show that molecular methods can be used as alternative tools for detecting S. stercoralis in human stool samples in tropical areas.
Resumo:
Background: Smoking is a well-known risk factor for destructive periodontal disease, but its relationship with periodontal status and subgingival microbiota remains unclear. Inherent limitations of microbiological methods previously used may partly explain these mixed results, and real-time polymerase chain reaction (PCR) has been presented as a valid alternative. The aim of the present study was to investigate the clinical condition and microbiological profile of patients with chronic periodontitis as related to the habit of smoking.Methods: Fifty patients (33 to 59 years old), 25 smokers and 25 never-smokers, constituted the sample. The visible plaque index (VPI), gingival bleeding index (GBI), bleeding on probing (BOP), periodontal probing depth (PD), clinical attachment loss (CAL), and gingival crevicular fluid (GCF) volume were recorded. Real-time PCR quantified Porphyromonas gingivalis, Micromonas micros, Dialister pneumosintes, Actinobacillus actinomycetemcomitans and total bacteria in subgingival samples.Results: Smokers and never-smokers showed similar values for VPI, GBI, and BOP. Smokers had deeper PD in buccal/lingual sites and higher CAL independently of the tooth surface. The GCF volume was smaller in smokers, independent of the PD. Similar amounts of total bacteria and P. gingivalis were observed for both groups. Significantly higher numbers of D. pneumosintes and M. micros were present in smokers and associated with moderate and deep pockets. When heavy smokers were considered, higher counts of total bacteria, M. micros, and D. pneumosintes were observed.Conclusions: Smoking seems to have a detrimental impact on the periodontal status and microbiological profile of patients with periodontitis. Compared to never-smokers, smokers had deeper pockets, greater periodontal destruction, and higher counts of some putative periodontal pathogens.
Resumo:
This study presents a new recombinant protein that acts as a powerful antiviral (rAVLO—recombinant Antiviral protein of Lonomia obliqua). It was able to reduce the replication by 106 fold for herpes virus and by 104 fold for rubella virus. RT-PCR of viral RNA rAVLO treated infected cells also showed similar rate of inhibition in replication. The analysis of this protein by bioinformatics suggests that this protein is globular, secreted with a signal peptide and has the ability to bind to MHC class I. It was found that there are several protein binding sites with various HLA and a prevalence of α-helices in the N-terminal region (overall classified as a α/β protein type). BLAST similarity sequence search for corresponding cDNA did not reveal a similar sequence in Genbank, suggesting that it is from a novel protein family. In this study we have observed that this recombinant protein and hemolymph has a potent antiviral action. This protein was produced in a baculovirus/Sf-9 system. Therefore, these analyses suggest that this novel polypeptide is a candidate as a broad spectrum antiviral.
Resumo:
Real-time systems demand guaranteed and predictable run-time behaviour in order to ensure that no task has missed its deadline. Over the years we are witnessing an ever increasing demand for functionality enhancements in the embedded real-time systems. Along with the functionalities, the design itself grows more complex. Posed constraints, such as energy consumption, time, and space bounds, also require attention and proper handling. Additionally, efficient scheduling algorithms, as proven through analyses and simulations, often impose requirements that have significant run-time cost, specially in the context of multi-core systems. In order to further investigate the behaviour of such systems to quantify and compare these overheads involved, we have developed the SPARTS, a simulator of a generic embedded real- time device. The tasks in the simulator are described by externally visible parameters (e.g. minimum inter-arrival, sporadicity, WCET, BCET, etc.), rather than the code of the tasks. While our current implementation is primarily focused on our immediate needs in the area of power-aware scheduling, it is designed to be extensible to accommodate different task properties, scheduling algorithms and/or hardware models for the application in wide variety of simulations. The source code of the SPARTS is available for download at [1].
Resumo:
In spite of the significant amount of scientific work in Wireless Sensor Networks (WSNs), there is a clear lack of effective, feasible and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster abstract outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON relies on a hierarchical network architecture together with integrated middleware and command&control mechanisms. It has been designed to use standard commercially– available technologies, while maintaining as much flexibility as possible to meet specific applications’ requirements. The EMMON WSN architecture has been validated through extensive simulation and experimental evaluation, including through a 300+ node test-bed, the largest WSN test-bed in Europe to date
Resumo:
Increased levels of plasma oxLDL, which is the oxidized fraction of Low Density Lipoprotein (LDL), are associated with atherosclerosis, an inflammatory disease, and the subsequent development of severe cardiovascular diseases that are today a major cause of death in modern countries. It is therefore important to find a reliable and fast assay to determine oxLDL in serum. A new immunosensor employing three monoclonal antibodies (mAbs) against oxLDL is proposed in this work as a quick and effective way to monitor oxLDL. The oxLDL was first employed to produce anti-oxLDL monoclonal antibodies by hybridoma cells that were previously obtained. The immunosensor was set-up by selfassembling cysteamine (Cyst) on a gold (Au) layer (4 mm diameter) of a disposable screen-printed electrode. Three mAbs were allowed to react with N-hydroxysuccinimide (NHS) and ethyl(dimethylaminopropyl)carbodiimide (EDAC), and subsequently incubated in the Au/Cys. Albumin from bovine serum (BSA) was immobilized further to ensure that other molecules apart from oxLDL could not bind to the electrode surface. All steps were followed by various characterization techniques such as electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The analytical operation of the immunosensor was obtained by incubating the sensing layer of the device in oxLDL for 15 minutes, prior to EIS and SWV. This was done by using standard oxLDL solutions prepared in foetal calf serum, in order to simulate patient's plasma with circulating oxLDL. A sensitive response was observed from 0.5 to 18.0 mg mL 1 . The device was successfully applied to determine the oxLDL fraction in real serum, without prior dilution or necessary chemical treatment. The use of multiple monoclonal antibodies on a biosensing platform seemed to be a successful approach to produce a specific response towards a complex multi-analyte target, correlating well with the level of oxLDL within atherosclerosis disease, in a simple, fast and cheap way.