999 resultados para PCB design
Resumo:
Bio-impedance analysis (BIA) provides a rapid, non-invasive technique for body composition estimation. BIA offers a convenient alternative to standard techniques such as MRI, CT scan or DEXA scan for selected types of body composition analysis. The accuracy of BIA is limited because it is an indirect method of composition analysis. It relies on linear relationships between measured impedance and morphological parameters such as height and weight to derive estimates. To overcome these underlying limitations of BIA, a multi-frequency segmental bio-impedance device was constructed through a series of iterative enhancements and improvements of existing BIA instrumentation. Key features of the design included an easy to construct current-source and compact PCB design. The final device was trialled with 22 human volunteers and measured impedance was compared against body composition estimates obtained by DEXA scan. This enabled the development of newer techniques to make BIA predictions. To add a ‘visual aspect’ to BIA, volunteers were scanned in 3D using an inexpensive scattered light gadget (Xbox Kinect controller) and 3D volumes of their limbs were compared with BIA measurements to further improve BIA predictions. A three-stage digital filtering scheme was also implemented to enable extraction of heart-rate data from recorded bio-electrical signals. Additionally modifications have been introduced to measure change in bio-impedance with motion, this could be adapted to further improve accuracy and veracity for limb composition analysis. The findings in this thesis aim to give new direction to the prediction of body composition using BIA. The design development and refinement applied to BIA in this research programme suggest new opportunities to enhance the accuracy and clinical utility of BIA for the prediction of body composition analysis. In particular, the use of bio-impedance to predict limb volumes which would provide an additional metric for body composition measurement and help distinguish between fat and muscle content.
Resumo:
In this bachelor's thesis a relay card for capacitance measurements was designed, built and tested. The study was made for the research and development laboratory of VTI Technologies, which manufactures capacitive silicon micro electro mechanical accelerometers and pressure sensors. As the size of the sensors is decreasing the capacitance value of the sensors also decreases. The decreased capacitance causes a need for new and more accurate measurement systems. The technology used in the instrument measuring the capacitance dictates a framework how the relay card should be designed, thus the operating principle of the instrument must be known. To achieve accurate results the measurement instrument and its functions needed to be used correctly. The relay card was designed using printed circuit board design methods that minimize interference coupling to the measurement. The relay card that was designed in this study is modular. It consists of a separate CPU card, which was used to control the add-on cards connected to it. The CPU card was controlled from a computer through a serial bus. Two add-on cards for the CPU card were designed in this study. The first one was the measurement card, which could be used to measure 32 capacitive sensors. The second add-on card was the MUX card, which could be used to switch between two measurement cards. The capacitance measurements carried out through the MUX card and the measurement cards were characterized with a series of test measurements. The test measurement data was then analysed. The relay card design was confirmed to work and offer accurate measurement results up to a measurement frequency of 10 MHz. The length of the measurement cables limited the measurement frequency.
Resumo:
Poder mesurar i enregistrar diferents tipus de magnituds com pressió, força, temperatura etc. s’ha convertit en una necessitat per moltes aplicacions actuals. Aquestes magnituds poden tenir procedències molt diverses, tals com l’entorn, o poden ser generades per sistemes mecànics, elèctrics, etc. Per tal de poder adquirir aquestes magnituds, s’utilitzen els sistemes d’adquisició de dades. Aquests sistemes, prenen mostres analògiques del món real, i les transformen en dades digitals que poden ser manipulades per un sistema electrònic. Pràcticament qualsevol magnitud es pot mesurar utilitzant el sensor adient. Una magnitud molt utilitzada en sistemes d’adquisició de dades, és la temperatura. Els sistemes d’adquisició de temperatures estan molt generalitzats, i podem trobar-los com a sistemes, on l’objectiu és mostrar les dades adquirides, o podem trobar-los formant part de sistemes de control, aportant uns inputs necessaris per el seu correcte funcionament, garantir-ne l’estabilitat, seguretat etc. Aquest projecte, promogut per l’empresa Elausa, s’encarregarà d’adquirir, el senyal d’entrada de 2 Termoparells. Aquests mesuraran temperatures de circuits electrònics, que es trobaran dintre la càmera climàtica de Elausa, sotmesos a diferents condicions de temperatura, per tal de rebre l’homologació del circuit. El sistema haurà de poder mostrar les dades adquirides en temps real, i emmagatzemar-les en un PC que estarà ubicat en una oficina, situada a uns 30 m de distància de la sala on es farà el test. El sistema constarà d’un circuit electrònic que adquirirà, i condicionarà el senyal de sortida dels termoparells, per adaptar-lo a la tensió d’entrada d’un convertidor analògic digital, del microcontrolador integrat en aquesta placa. Seguidament aquesta informació, s’enviarà a través d’un mòdul transmissor de radiofreqüència, cap al PC on es visualitzaran les dades adquirides. Els objectius plantejats són els següents: - Dissenyar el circuit electrònic d’adquisició i condicionament del senyal. - Dissenyar, fabricar i muntar el circuit imprès de la placa d’adquisició. - Realitzar el programa de control del microcontrolador. - Realitzar el programa per presentar i desar les dades en un PC. - El sistema ha d’adquirir 2 temperatures, a través de Termoparells amb un rang d’entrada de -40ºC a +240ºC - S’ha de transmetre les dades via R.F. Els resultats del projecte han estat satisfactoris i s’han complert els objectius plantejats.
Resumo:
Poder mesurar i enregistrar diferents tipus de magnituds com pressió, força, temperatura etc. s’ha convertit en una necessitat per moltes aplicacions actuals. Aquestes magnituds poden tenir procedències molt diverses, tals com l’entorn, o poden ser generades per sistemes mecànics, elèctrics, etc. Per tal de poder adquirir aquestes magnituds, s’utilitzen els sistemes d’adquisició de dades. Aquests sistemes, prenen mostres analògiques del món real, i les transformen en dades digitals que poden ser manipulades per un sistema electrònic. Pràcticament qualsevol magnitud es pot mesurar utilitzant el sensor adient. Una magnitud molt utilitzada en sistemes d’adquisició de dades, és la temperatura. Els sistemes d’adquisició de temperatures estan molt generalitzats, i podem trobar-los com a sistemes, on l’objectiu és mostrar les dades adquirides, o podem trobar-los formant part de sistemes de control, aportant uns inputs necessaris per el seu correcte funcionament, garantir-ne l’estabilitat, seguretat etc. Aquest projecte, promogut per l’empresa Elausa, s’encarregarà d’adquirir, el senyal d’entrada de 2 Termoparells. Aquests mesuraran temperatures de circuits electrònics, que es trobaran dintre la càmera climàtica de Elausa, sotmesos a diferents condicions de temperatura, per tal de rebre l’homologació del circuit. El sistema haurà de poder mostrar les dades adquirides en temps real, i emmagatzemar-les en un PC que estarà ubicat en una oficina, situada a uns 30 m de distància de la sala on es farà el test. El sistema constarà d’un circuit electrònic que adquirirà, i condicionarà el senyal de sortida dels termoparells, per adaptar-lo a la tensió d’entrada d’un convertidor analògic digital, del microcontrolador integrat en aquesta placa. Seguidament aquesta informació, s’enviarà a través d’un mòdul transmissor de radiofreqüència, cap al PC on es visualitzaran les dades adquirides. Els objectius plantejats són els següents: - Dissenyar el circuit electrònic d’adquisició i condicionament del senyal. - Dissenyar, fabricar i muntar el circuit imprès de la placa d’adquisició. - Realitzar el programa de control del microcontrolador. - Realitzar el programa per presentar i desar les dades en un PC. - El sistema ha d’adquirir 2 temperatures, a través de Termoparells amb un rang d’entrada de -40ºC a +240ºC - S’ha de transmetre les dades via R.F. Els resultats del projecte han estat satisfactoris i s’han complert els objectius plantejats.
Resumo:
Radio frequency (RF) energy harvesting is an emerging technology that will enable to drive the next generation of wireless sensor networks (WSNs) without the need of using batteries. In this paper, we present RF energy harvesting circuits specifically developed for GSM bands (900/1800) and a wearable dual-band antenna suitable for possible implementation within clothes for body worn applications. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with match impedance circuit) responsible for harvesting the RF energy. Different printed circuit board (PCB) fabrication techniques to produce the prototypes result in different values of conversion efficiency. Therefore, we conclude that if the PCB fabrication is achieved by means of a rigorous control in the photo-positive method and chemical bath procedure applied to the PCB it allows for attaining better values for the conversion efficiency. All three prototypes (1, 2 and 3) can power supply the IRIS sensor node for RF received powers of -4 dBm, -6 dBm and -5 dBm, and conversion efficiencies of 20, 32 and 26%, respectively. © 2014 IEEE.
Resumo:
This thesis presents a new approach for the design and fabrication of bond wire magnetics for power converter applications by using standard IC gold bonding wires and micro-machined magnetic cores. It shows a systematic design and characterization study for bond wire transformers with toroidal and race-track cores for both PCB and silicon substrates. Measurement results show that the use of ferrite cores increases the secondary self-inductance up to 315 µH with a Q-factor up to 24.5 at 100 kHz. Measurement results on LTCC core report an enhancement of the secondary self-inductance up to 23 µH with a Q-factor up to 10.5 at 1.4 MHz. A resonant DC-DC converter is designed in 0.32 µm BCD6s technology at STMicroelectronics with a depletion nmosfet and a bond wire micro-transformer for EH applications. Measures report that the circuit begins to oscillate from a TEG voltage of 280 mV while starts to convert from an input down to 330 mV to a rectified output of 0.8 V at an input of 400 mV. Bond wire magnetics is a cost-effective approach that enables a flexible design of inductors and transformers with high inductance and high turns ratio. Additionally, it supports the development of magnetics on top of the IC active circuitry for package and wafer level integrations, thus enabling the design of high density power components. This makes possible the evolution of PwrSiP and PwrSoC with reliable highly efficient magnetics.
Resumo:
Marine sediments are the main accumulation reservoir of organic recalcitrant pollutants such as polychlorinated biphenyls (PCBs). In the anoxic conditions typical of these sediments, anaerobic bacteria of the phylum Chloroflexi are able to attack these compounds in a process called microbial reductive dechlorination. Such activity and members of this phylum were detected in PCB-impacted sediments of the Venice Lagoon. The aim of this work was to investigate microbial reductive dechlorination and design bioremediation approaches for marine sediments of the area. Three out of six sediment cultures from different sampling areas exhibited dechlorination activities in the same conditions of the site and two phylotypes (VLD-1 and VLD-2) were detected and correlated to this metabolism. Biostimulation was tested on enriched dechlorinating sediment cultures from the same site using five different electron donors, of which lactate was the best biostimulating agent; complementation of microbial and chemical dechlorination catalyzed by biogenic zerovalent Pd nanoparticles was not effective due to sulfide poisoning of the catalyst. A new biosurfactant-producing strain of Shewanella frigidimarina was concomitantly obtained from hydrocarbon-degrading marine cultures and selected because of the low toxicity of its product. All these findings were then exploited to develop bioremediation lab-scale tests in shaken reactors and static microcosms on real sediments and water of the Venice lagoon, testing i) a bioaugmentation approach, with a selected enriched sediment culture from the same area, ii) a biostimulation approach with lactate as electron donor, iii) a bioavailability enhancement with the supplementation of the newly-discovered biosurfactant, and iv) all possible combinations of the afore-mentioned approaches. The best bioremediation approach resulted to be a combination of bioaugmentation and bioremediation and it could be a starting point to design bioremediation process for actual marine sediments of the Venice Lagoon area.
Resumo:
This thesis was carried out inside the ESA's ESEO mission and focus in the design of one of the secondary payloads carried on board the spacecraft: a GNSS receiver for orbit determination. The purpose of this project is to test the technology of the orbit determination in real time applications by using commercial components. The architecture of the receiver includes a custom part, the navigation computer, and a commercial part, the front-end, from Novatel, with COCOM limitation removed, and a GNSS antenna. This choice is motivated by the goal of demonstrating the correct operations in orbit, enabling a widespread use of this technology while lowering the cost and time of the device’s assembly. The commercial front-end performs GNSS signal acquisition, tracking and data demodulation and provides raw GNSS data to the custom computer. This computer processes this raw observables, that will be both transferred to the On-Board Computer and then transmitted to Earth and provided as input to the recursive estimation filter on-board, in order to obtain an accurate positioning of the spacecraft, using the dynamic model. The main purpose of this thesis, is the detailed design and development of the mentioned GNSS receiver up to the ESEO project Critical Design Review, including requirements definition, hardware design and breadboard preliminary test phase design.
Resumo:
Progettazione, test e creazione di schede elettroniche per lo studio dell'atmosfera in condizioni ambientali difficili.
Resumo:
Introduzione alla tecnologia PCB. Introduzione software design Circuit Maker Conversione circuito per micro-potenze con CircuitMaker
Resumo:
This research initiative was triggered by the problems of water management of Polymer Electrolyte Membrane Fuel Cell (PEMFC). In low temperature fuel cells such as PEMFC, some of the water produced after the chemical reaction remains in its liquid state. Excess water produced by the fuel cell must be removed from the system to avoid flooding of the gas diffusion layers (GDL). The GDL is responsible for the transport of reactant gas to the active sites and remove the water produced from the sites. If the GDL is flooded, the supply gas will not be able to reach the reactive sites and the fuel cell fails. The choice of water removal method in this research is to exert a variable asymmetrical force on a liquid droplet. As the drop of liquid is subjected to an external vibrational force in the form of periodic wave, it will begin to oscillate. A fluidic oscillator is capable to produce a pulsating flow using simple balance of momentum fluxes between three impinging jets. By connecting the outputs of the oscillator to the gas channels of a fuel cell, a flow pulsation can be imposed on a water droplet formed within the gas channel during fuel cell operation. The lowest frequency produced by this design is approximately 202 Hz when a 20 inches feed-back port length was used and a supply pressure of 5 psig was introduced. This information was found by setting up a fluidic network with appropriate data acquisition. The components include a fluidic amplifier, valves and fittings, flow meters, a pressure gage, NI-DAQ system, Siglab®, Matlab software and four PCB microphones. The operating environment of the water droplet was reviewed, speed of the sound pressure which travels down the square channel was precisely estimated, and measurement devices were carefully selected. Applicable alternative measurement devices and its application to pressure wave measurement was considered. Methods for experimental setup and possible approaches were recommended, with some discussion of potential problems with implementation of this technique. Some computational fluid dynamic was also performed as an approach to oscillator design.
Resumo:
Continuous advancements in technology have led to increasingly comprehensive and distributed product development processes while in pursuit of improved products at reduced costs. Information associated with these products is ever changing, and structured frameworks have become integral to managing such fluid information. Ontologies and the Semantic Web have emerged as key alternatives for capturing product knowledge in both a human-readable and computable manner. The primary and conclusive focus of this research is to characterize relationships formed within methodically developed distributed design knowledge frameworks to ultimately provide a pervasive real-time awareness in distributed design processes. Utilizing formal logics in the form of the Semantic Web’s OWL and SWRL, causal relationships are expressed to guide and facilitate knowledge acquisition as well as identify contradictions between knowledge in a knowledge base. To improve the efficiency during both the development and operational phases of these “intelligent” frameworks, a semantic relatedness algorithm is designed specifically to identify and rank underlying relationships within product development processes. After reviewing several semantic relatedness measures, three techniques, including a novel meronomic technique, are combined to create AIERO, the Algorithm for Identifying Engineering Relationships in Ontologies. In determining its applicability and accuracy, AIERO was applied to three separate, independently developed ontologies. The results indicate AIERO is capable of consistently returning relatedness values one would intuitively expect. To assess the effectiveness of AIERO in exposing underlying causal relationships across product development platforms, a case study involving the development of an industry-inspired printed circuit board (PCB) is presented. After instantiating the PCB knowledge base and developing an initial set of rules, FIDOE, the Framework for Intelligent Distributed Ontologies in Engineering, was employed to identify additional causal relationships through extensional relatedness measurements. In a conclusive PCB redesign, the resulting “intelligent” framework demonstrates its ability to pass values between instances, identify inconsistencies amongst instantiated knowledge, and identify conflicting values within product development frameworks. The results highlight how the introduced semantic methods can enhance the current knowledge acquisition, knowledge management, and knowledge validation capabilities of traditional knowledge bases.
Resumo:
There are many the requirements that modern power converters should fulfill. Most of the applications where these converters are used, demand smaller converters with high efficiency, improved power density and a fast dynamic response. For instance, loads like microprocessors demand aggressive current steps with very high slew rates (100A/mus and higher); besides, during these load steps, the supply voltage of the microprocessor should be kept within tight limits in order to ensure its correct performance. The accomplishment of these requirements is not an easy task; complex solutions like advanced topologies - such as multiphase converters- as well as advanced control strategies are often needed. Besides, it is also necessary to operate the converter at high switching frequencies and to use capacitors with high capacitance and low ESR. Improving the dynamic response of power converters does not rely only on the control strategy but also the power topology should be suited to enable a fast dynamic response. Moreover, in later years, a fast dynamic response does not only mean accomplishing fast load steps but output voltage steps are gaining importance as well. At least, two applications that require fast voltage changes can be named: Low power microprocessors. In these devices, the voltage supply is changed according to the workload and the operating frequency of the microprocessor is changed at the same time. An important reduction in voltage dependent losses can be achieved with such changes. This technique is known as Dynamic Voltage Scaling (DVS). Another application where important energy savings can be achieved by means of changing the supply voltage are Radio Frequency Power Amplifiers. For example, RF architectures based on ‘Envelope Tracking’ and ‘Envelope Elimination and Restoration’ techniques can take advantage of voltage supply modulation and accomplish important energy savings in the power amplifier. However, in order to achieve these efficiency improvements, a power converter with high efficiency and high enough bandwidth (hundreds of kHz or even tens of MHz) is necessary in order to ensure an adequate supply voltage. The main objective of this Thesis is to improve the dynamic response of DC-DC converters from the point of view of the power topology. And the term dynamic response refers both to the load steps and the voltage steps; it is also interesting to modulate the output voltage of the converter with a specific bandwidth. In order to accomplish this, the question of what is it that limits the dynamic response of power converters should be answered. Analyzing this question leads to the conclusion that the dynamic response is limited by the power topology and specifically, by the filter inductance of the converter which is found in series between the input and the output of the converter. The series inductance is the one that determines the gain of the converter and provides the regulation capability. Although the energy stored in the filter inductance enables the regulation and the capability of filtering the output voltage, it imposes a limitation which is the concern of this Thesis. The series inductance stores energy and prevents the current from changing in a fast way, limiting the slew rate of the current through this inductor. Different solutions are proposed in the literature in order to reduce the limit imposed by the filter inductor. Many publications proposing new topologies and improvements to known topologies can be found in the literature. Also, complex control strategies are proposed with the objective of improving the dynamic response in power converters. In the proposed topologies, the energy stored in the series inductor is reduced; examples of these topologies are Multiphase converters, Buck converter operating at very high frequency or adding a low impedance path in parallel with the series inductance. Control techniques proposed in the literature, focus on adjusting the output voltage as fast as allowed by the power stage; examples of these control techniques are: hysteresis control, V 2 control, and minimum time control. In some of the proposed topologies, a reduction in the value of the series inductance is achieved and with this, the energy stored in this magnetic element is reduced; less stored energy means a faster dynamic response. However, in some cases (as in the high frequency Buck converter), the dynamic response is improved at the cost of worsening the efficiency. In this Thesis, a drastic solution is proposed: to completely eliminate the series inductance of the converter. This is a more radical solution when compared to those proposed in the literature. If the series inductance is eliminated, the regulation capability of the converter is limited which can make it difficult to use the topology in one-converter solutions; however, this topology is suitable for power architectures where the energy conversion is done by more than one converter. When the series inductor is eliminated from the converter, the current slew rate is no longer limited and it can be said that the dynamic response of the converter is independent from the switching frequency. This is the main advantage of eliminating the series inductor. The main objective, is to propose an energy conversion strategy that is done without series inductance. Without series inductance, no energy is stored between the input and the output of the converter and the dynamic response would be instantaneous if all the devices were ideal. If the energy transfer from the input to the output of the converter is done instantaneously when a load step occurs, conceptually it would not be necessary to store energy at the output of the converter (no output capacitor COUT would be needed) and if the input source is ideal, the input capacitor CIN would not be necessary. This last feature (no CIN with ideal VIN) is common to all power converters. However, when the concept is actually implemented, parasitic inductances such as leakage inductance of the transformer and the parasitic inductance of the PCB, cannot be avoided because they are inherent to the implementation of the converter. These parasitic elements do not affect significantly to the proposed concept. In this Thesis, it is proposed to operate the converter without series inductance in order to improve the dynamic response of the converter; however, on the other side, the continuous regulation capability of the converter is lost. It is said continuous because, as it will be explained throughout the Thesis, it is indeed possible to achieve discrete regulation; a converter without filter inductance and without energy stored in the magnetic element, is capable to achieve a limited number of output voltages. The changes between these output voltage levels are achieved in a fast way. The proposed energy conversion strategy is implemented by means of a multiphase converter where the coupling of the phases is done by discrete two-winding transformers instead of coupledinductors since transformers are, ideally, no energy storing elements. This idea is the main contribution of this Thesis. The feasibility of this energy conversion strategy is first analyzed and then verified by simulation and by the implementation of experimental prototypes. Once the strategy is proved valid, different options to implement the magnetic structure are analyzed. Three different discrete transformer arrangements are studied and implemented. A converter based on this energy conversion strategy would be designed with a different approach than the one used to design classic converters since an additional design degree of freedom is available. The switching frequency can be chosen according to the design specifications without penalizing the dynamic response or the efficiency. Low operating frequencies can be chosen in order to favor the efficiency; on the other hand, high operating frequencies (MHz) can be chosen in order to favor the size of the converter. For this reason, a particular design procedure is proposed for the ‘inductorless’ conversion strategy. Finally, applications where the features of the proposed conversion strategy (high efficiency with fast dynamic response) are advantageus, are proposed. For example, in two-stage power architectures where a high efficiency converter is needed as the first stage and there is a second stage that provides the fine regulation. Another example are RF power amplifiers where the voltage is modulated following an envelope reference in order to save power; in this application, a high efficiency converter, capable of achieving fast voltage steps is required. The main contributions of this Thesis are the following: The proposal of a conversion strategy that is done, ideally, without storing energy in the magnetic element. The validation and the implementation of the proposed energy conversion strategy. The study of different magnetic structures based on discrete transformers for the implementation of the proposed energy conversion strategy. To elaborate and validate a design procedure. To identify and validate applications for the proposed energy conversion strategy. It is important to remark that this work is done in collaboration with Intel. The particular features of the proposed conversion strategy enable the possibility of solving the problems related to microprocessor powering in a different way. For example, the high efficiency achieved with the proposed conversion strategy enables it as a good candidate to be used for power conditioning, as a first stage in a two-stage power architecture for powering microprocessors.
Resumo:
Este PFC es un trabajo muy práctico, los objetivos fueron impuestos por el tutor, como parte del desarrollo de herramientas (software y hardware) que serán utilizados posteriormente a nivel de docencia e investigación. El PFC tiene dos áreas de trabajo, la principal y primera que se expone es la utilización de una herramienta de simulación térmica para caracterizar dispositivos semiconductores con disipador, la segunda es la expansión de una tarjeta de adquisición de datos con unas PCBs diseñadas, que no estaban disponibles comercialmente. Se ha probado y configurado “Autodesk 2013 Inventor Fusion” y “Autodesk 2013 Simulation and Multiphysics” para simulación térmica de dispositivos de alta potencia. Estas aplicaciones son respectivamente de diseño mecánico y simulación térmica, y la UPM dispone actualmente de licencia. En esta parte del proyecto se realizará un manual de utilización, para que se continúe con esta línea de trabajo en otros PFC. Además se han diseñado mecánicamente y simulado térmicamente diodos LED de alta potencia luminosa (High Brightness Lights Emitting Diodes, HB-LEDs), tanto blancos como del ultravioleta cercano (UVA). Las simulaciones térmicas son de varios tipos de LEDs que actualmente se están empleando y caracterizando térmicamente en Proyectos Fin de Carrera y una Tesis doctoral. En la segunda parte del PFC se diseñan y realizan unas placas de circuito impreso (PCB) cuya función es formar parte de sistemas de instrumentación de adquisición automática de datos basados en LabVIEW. Con esta instrumentación se pueden realizar ensayos de fiabilidad y de otro tipo a dispositivos y sistemas electrónicos. ABSTRACT. The PFC is a very practical work, the objectives were set by the tutor, as part of the development of tools (software and hardware) that will be used later at level of teaching and research. The PFC has two parts, the first one explains the use of a software tool about thermal simulation to characterize devices semiconductors with heatsink, and second one is the expansion of card data acquisition with a PCBs designed, which were not available commercially. It has been tested and configured "Autodesk 2013 Inventor Fusion" and "Autodesk 2013 Simulation Multiphysics” for thermal simulation of high power devices. These applications are respectively of mechanical design and thermal simulation, and the UPM has at present license. In this part of the project a manual of use will be realized, so that it is continued by this line of work in other PFC. Also they have been designed mechanically and simulated thermally LEDs light (High Brightness Lights Emitting Diodes , HB- LEDs) both white and ultraviolet. Thermal simulations are several types of LEDs are now being used in thermally characterizing in Thesis and PhD. In the second part of the PFC there are designed and realized circuit board (PCB) whose function is to be a part of instrumentation systems of automatic acquisition based on LabVIEW data. With this instrumentation can perform reliability testing and other electronic devices and systems.
Resumo:
Purpose – The purpose of this paper is to investigate the optimization for a placement machine in printed circuit board (PCB) assembly when family setup strategy is adopted. Design/methodology/approach – A complete mathematical model is developed for the integrated problem to optimize feeder arrangement and component placement sequences so as to minimize the makespan for a set of PCB batches. Owing to the complexity of the problem, a specific genetic algorithm (GA) is proposed. Findings – The established model is able to find the minimal makespan for a set of PCB batches through determining the feeder arrangement and placement sequences. However, exact solutions to the problem are not practical due to the complexity. Experimental tests show that the proposed GA can solve the problem both effectively and efficiently. Research limitations/implications – When a placement machine is set up for production of a set of PCB batches, the feeder arrangement of the machine together with the component placement sequencing for each PCB type should be solved simultaneously so as to minimize the overall makespan. Practical implications – The paper investigates the optimization for PCB assembly with family setup strategy, which is adopted by many PCB manufacturers for reducing both setup costs and human errors. Originality/value – The paper investigates the feeder arrangement and placement sequencing problems when family setup strategy is adopted, which has not been studied in the literature.