50 resultados para PBT
Resumo:
Persistent bioaccumulative toxins (PBTs) are organic substances that are persistent, bioaccumulative and can cause severe toxic effects (e.g. potential oncogens, mutagenic, endocrine disrupters) to human health or environment which are the ones that need special attention. PBT chemicals could be released to the environment from several types of sources and are ubiquitous in environment. However, fast and efficiency monitoring and assessment methods to investigate PBTs in environment are still lacking. In this study, a cleaning-up procedure of analyzing PBTs in fuels combustion soot was developed and its performance was assessed through comparing the chromatograms of crude extracts with their cleaned extracts after the cleaning-up procedure. The results showed that polycyclic aromatic compounds (PACs) were the main components in fuel combustion soot and the clean-up procedure developed in this paper can be well used as the method of analyzing PBTs in fuels combustion soot.
Resumo:
聚对苯二甲酸丁二醇酯(PBT)是一种多用途的工程塑料。本文中,主要研究了PBT/Epoxy(E)合金及PBT/ABS-g-GMA/E合金的结晶行为和力学性能。 使用示差扫描量热法对PBT/Epoxy合金的等温结晶过程进行了研究。发现PBT和E03 609环氧树脂在所研究的组成范围内完全相容。环氧树脂起到异相成核剂的作用,使PBT产生更强的瞬间结晶三维生长趋势。PBT和环氧树脂的Flory相互作用参数为负值,说明PBT和环氧树脂形成了热力学上的稳定混合物。 使用几种方法对PBT/Epoxy合金的非等温结晶过程进行了研究,Ozawa方程不能充分描述PBT/Epoxy合金的非等温结晶过程;使用莫志深等人提出的方法,成功地描述了该过程。实验结果显示1%环氧树脂可使PBT/Epoxy合金结晶速率明显增加。 对PBT/Epoxy合金的热和力学性能进行了研究。1%环氧树脂的加入提高PBT/Epoxy合金的缺口冲击强度20%;从红外光谱分析,环氧树脂与PBT发生了相互作用;环氧树脂影响了PBT/Epoxy合金的力学性质和结晶行为。 采用乳液聚合技术将甲基丙烯酸环氧丙酯(GMA)引入到ABS的壳层,合成了环氧官能化的ABS共聚物(ABS-g-GMA),将环氧树脂加入到PBT/ABS-g-GMA合金中,利用环氧官能团与PBT端羧基/羟基的反应达到增容PBT/ABS合金的目的。当环氧树脂的含量为5%时,PBT/ABS-g-GMA/E共混物比PBT/ABS-g-GMA共混物有更优异的力学性质。 研究了聚亚丙基碳酸酯(PPC)和聚丁二酸二甲酯(PBS)共混物的相容性、结晶和力学性能。结果显示组份PPC/PBS(90/10)可能产生部分相容。采用偏光显微镜观察了PPC/PBS共混物的形态,对于90/10 PPC/PBS共混物,发现很大数量的PBS小球晶分散在PPC基质中。力学结果显示90/10 PPC/PBS共混物拉伸强度比纯PPC提高了30%,冲击强度提高了11%。
Resumo:
本工作采用熔融反应接枝的方法将(3-异氰酸酯基-4-甲基)苯氨基甲酸-2-丙烯酯(TAI)引入到聚苯乙烯-b-聚(乙烯-co-丁烯)-b-聚苯乙烯三嵌段共聚物(SEBS)上,以实现SEBS的功能化。红外光谱表明TAI已经成功接枝到SEBS上。GPC测试表明接枝后SEBS具有高的分子量与宽的分子量分布。DMA分析证明,接枝后聚(乙烯-co-丁烯) (PEB)段的玻璃化转变提高。对未参与接枝的单体的分析表明,单体TAI是个不容易自聚的单体,并对接枝过程的机理进行了研究。 为了提高TAI的存储稳定性和解决反应过程中的毒性大的问题,采用己内酰胺为封端剂对TAI中的异氰酸酯进行了封端。红外光谱和核磁共振结果表明,己内酰胺封端的TAI(BTAI)中含有双键和封闭型异氰酸酯结构,不存在着活泼的异氰酸酯。红外光谱结果表明,在高温下BTAI可以重新产生活泼的异氰酸酯基团。DSC与TG/DTA研究证明,BTAI的初始解离温度大约为135 C。采用熔融反应接枝的方法将BTAI接枝到SEBS和乙烯-辛烯共聚物(POE)分子上。研究表明,接枝率随着单体含量或引发剂含量的增加而增加。接枝以后的SEBS与POE的剪切变稀行为都比未接枝的SEBS与POE要明显。 利用BTAI功能化的SEBS和POE两种弹性体,通过熔融反应共混方法制备了PA6合金。两种弹性体与PA6共混物的红外光谱和流变行为的研究表明,在反应共混中形成了新的接枝共聚物。共混物的脆断面的场发射扫描电镜照片表明,共混物形成一种海-岛结构,而反应共混物的具有更均匀的粒子分散性,更小的粒子尺寸。PA6/SEBS-g-BTAI共混的透射电镜照片说明,共混物中形成了一种以PS为核-PEB为壳的核壳结构。与相应的物理共混物相比,通过反应共混制备的PA6合金(PA6/SEBS-g-BTAI合金和PA6/POE-g-BTAI合金)的拉伸强度、杨氏模量得到了提高。两种反应共混物的缺口冲击强度得到了非常明显的提高,合金材料的缺口冲击强度可以达到1000 J/m 以上。共混物中弹性体对PA6的结晶起到了成核的作用,结晶温度提高。形成的共聚物阻碍了PA6的分子链的运动,使得PA6的结晶温度下降。 本工作还利用上述制备的POE-g-BTAI和SEBS-g-BTAI两种功能化的弹性体与聚对苯二甲酸丁二醇酯(PBT)进行共混。研究表明,在反应共混过程中PBT中的反应基团与释放出的异氰酸酯发生反应,生成了新的共聚物。通过共混物的脆断面的FESEM图片可以看到,POE与PBT的共混物中,POE以球状粒子分散在PBT中,并且反应共混物的粒子分散均匀,粒子尺寸变小。与POE/PBT共混不同的是,在PBT与SEBS共混过程中,二者形成了交错结构,而反应共混在较低含量就形成了交错结构。POE与PBT反应共混物的缺口冲击强度得到了很大的提高,冲击强度可以达到1100 J/m以上,而PBT与SEBS的反应共混物的冲击强度改变不大。相对于物理共混物,两种弹性体与PBT的反应共混物的拉伸强度与拉伸模量都得到了提高。弹性体的加入提高了PBT的结晶温度,反应共混物的结晶温度低于物理共混物的结晶温度,说明弹性体的加入起到了PBT的成核剂的作用,生成的共聚物亦阻碍了PBT的分子链的移动。 关键词:聚苯乙烯-b-聚(乙烯-co-丁烯)-b-聚苯乙烯三嵌段共聚物;乙烯-辛烯共聚物;封闭型异氰酸酯;反应加工;聚酰胺6;聚对苯二甲酸丁二醇酯
Resumo:
以过氧化二异丙苯(DCP)为引发剂,甲基丙烯酸缩水甘油醋(GMA)为活性单体对HIPS进行熔融接枝,制得了功能化的高抗冲苯乙烯(HIPS-g-GMA)。比较HIPS-g-GMA和纯的HIPS的红外谱图,可以看到在HIPS-g-GMA的谱图上出现了一个新的吸收峰,即1730cm~(-1)处的C=O的伸缩振动吸收峰,它为接枝的GMA中的醋基基团的特征峰,因此可以确定GMA己经接枝到HIPS上。能谱分析也提供了相似的结论。同时研究了单体浓度和DCP用量对产物接枝率的影响。用化学滴定方法测定了接枝物的接枝率。随着GMA量的增加,接枝率也随之增加,当GMA用量超过14%时,接枝率趋于平缓;接枝率随DCP量增加而增加。采用DSC、SEM, WAXD, DMA及力学性能等方法和手段研究PBTIHIPS和PBT/HIPS-g-GMA二元共混体系的结晶、形态结构、动态力学性能及力学性能随组成的变化。当PBT为分散相,在增容体系中的PBT出现了分级结晶现象,结晶温度降低,这是由于分散相更为精细的结果。DMA结果表明,在PBTIHIP S-g-GMA体系中由于发生了化学反应,有接枝共聚物生成,体系中两个聚合物的Tg松弛均出现了较明显的降低,增容后体系的力学性能有显著提高。采用DSC, SEM, DMA及力学性能等方法和手段研究PBT/HIPS/HIPS-g-GMA三元共混体系的结构与性能。结果表明PBT无论是分散相还是连续相,HIPS-g-GMA的作用表现为:(1)对PBTIHIPS体系的熔融和结晶行为产生了明显的影响,使PBT的结晶速率变慢,结晶度降低,结晶尺寸分布变宽,结晶完善性变差;(2)改善了共混体系的相容性。未增容体系的形态结构为锐型界面,分散相粒子同基材相连接处清晰缝隙表明两组分间界面粘接很差,为典型的不相容两相形态结构;而加入功能化接枝物的体系的分散相粒子明显变小且分布均匀,甚至难以分辨两相结构的界面;(3)提高了体系的力学性能。在多官能团单体存在下,辐照对PBTIHIPS产生影响。(1)对共混体系的熔融和结晶行为产生影响,使共混体系中的PBT的熔点降低,熔程变宽,结品度下降,结晶速率变慢,结晶尺寸分布变宽,结晶完善性变差;(2)辐射引发多官能团单体反应,使体系的两个Tg松弛发生内移,表明体系的相容性得到改善;(3)当PBT为连续相时,辐射引发的多官能团单体反应对体系的形态结构影响不如化学增溶剂HIPS-g-GMA的效果显著,含有TMPTA的体系的形态结构要好于TAIL o当PBT为分散相,体系的形态结构变化很大,分散相尺寸明显变下小,且分布均匀;(4)辐射改性能提高PBT为分散相的共混体系的力学性能。利用DSC研究了不同成核剂对生物降解聚合物PHBV的结晶性能的彩响。结果表明:(1)添加的成核剂均能影响PHBV的结晶和熔融行为,提高PHBV的结晶速率和使PHBV的结晶更加完美;(2)所有的成核剂均能降低PHBV的结晶自由能;(3)成核剂对PHBV的影响依次为BN, talc, Tb_2O_3和La_2O_3。
Resumo:
本工作用反应挤出接枝的方法,以甲基丙烯酸环氧丙醋和丙烯酸为单体,有机过氧化物为引发剂,对聚乙烯进行了宫能化。对文献中各种测定PE-g-GMA中GMA含量的方法进行了比较和改进,提出了一种操作较为简单可靠的方法米测定PE-g-GMA中GMA的含量。研究了单体、引发剂浓度、反应时间和反应温度对接枝率和凝胶含量的影响。引发剂浓度对交联反应的影响最大,存在一个引发剂浓度的临界值,超过这一数值,则聚乙烯熔融接枝会产生大量的凝胶。加入给电子试剂,如对-苯醌,亚磷酸三苯醋,四氯化碳等,可以使凝胶含量由17%降低到1%左右,而接枝率只有轻微的下降,由1%降低到0.8%。在低引发剂浓度和单体浓度的情况下,加入油酸可以使接枝率有显著的提高,由0.1提高到0.7%。在过氧化物引发剂中加入秋兰姆化合物,可以使自由基引发接枝反应和交联反应的程度降低,接枝率由1%降低到0.2%,熔体流动速率由0.2提高到8。而苯乙烯的加入可以使接枝率有明显的提高,由0.8%提高到1.4%。官能化聚乙烯的结晶速率随接枝率的增加而增加,但是其结晶熔融烩随接枝率的增加而降低。原因可能是接枝链既起到了成核剂的作用,又抑制了PE的结晶生长过程。对PBTILLDPE-g-AA共混物的力学性能研究表明,其断裂伸长率和冲击强度与PBTILLDPE相比有了明显提高,断裂伸长率最高可以提高5倍,非缺口冲击强度提高幅度也很大,当LLDPE-g-AA接枝率为1%时,样条未能冲断,而PBTILLDPE只有在组成为30170时才发生部分断裂,其余组分样品则完全发生脆性断裂。增容后的共混物的拉伸强度略有改善。这说明接枝到LLDPE上的AA中的竣基与PBT的端经基存在较为强烈的相互作用,使官能化的LLDPE与PBT的相容性得到了提高,从而使共混物的韧性得到了大幅度改善,强度和模量则略有改善。对共混物的形态观察表明,随共混物中LLDPE含量的增加,作为分散相 的LLDPE的粒子尺寸逐渐增加,尺寸分布也不均匀,而当共混物中加入LLDPE-g-AA后,作为分散相的LLDPE-g-AA的粒子尺寸与LLDPE相比减少了一半左右,尺寸分布也更加均匀。尽管加入LLDPE-g-AA使共混物的相容性得到改善,但当PBT作为连续相存在时,共混体系仍然表现为脆性断裂,只有当LLDPE为连续相时,共混物才表现为韧性断裂。增容后的共混物在裂纹引发区表现出塑性变形的特征,而在裂纹的不稳扩展区仍然为脆性断裂,说明相容性的改善主要是提高了共混物的裂纹引发能和稳定扩展能,因此共混物的非缺口冲击强度提高非常明显。另外在拉伸的情况下,相容性的改善使材料出现宏观的剪切屈服成颈的现象,从而使断裂能大幅度提高。加入LLDPE到PBT中,抑制了PBT的正常球晶的形成,使PBT球晶中正常球晶的含量降低,这种效应随LLDPE-g-AA中AA含量的增加而增加,而对总的结晶度的影响较小,说明共混物两组分之间的相互作用主要是使PBT的结晶形式受到影响。对官能化聚乙烯蠕变行为和动态流变行为的研究表明,官能化聚乙烯的零切粘度(3.9 * 10~4Pa.s)要高于纯聚乙烯(1.28 * 10~4Pa.s),其熔体弹性也有显著提高,这不仅是由于分子量增加造成的,而且对接枝率比较高的官能化聚乙烯,也存在长支链的影响。共混物的粘度与共混物组成的关系在低剪切应力的情况下,符合Utracki方程。高剪切应力条件下,共混物的形态沿毛细管径向位置不同发生改变导致Utracki方程失效。Utrackl方程中的表征界面滑移因子的参数刀不仅与剪切应力有关,而且与两组分的粘弹性有关。
Resumo:
The miscibility and the isothermal crystallization kinetics for PBT/Epoxy blends have been studied by using differential scanning calorimetry, and several kinetic analyses have been used to describe the crystallization process. The Avrami exponents n were obtained for PBT/Epoxy blends. An addition of small amount of epoxy resin (3%) leads to an increase in the number of effective nuclei, thus resulting in an increase in crystallization rate and a stronger trend of instantaneous three-dimensional growth. For isothermal crystallization, crystallization parameter analysis showed that epoxy particles could act as effective nucleating agents, accelerating the crystallization of PBT component in the PBT/Epoxy blends. The Lauritzen-Hoffman equation for DSC isothermal crystallization data revealed that PBT/Epoxy 97/3 had lower nucleation constant K, than 100/0, 93/7, and 90/10 PBT/Epoxy blends. Analysis of the crystallization data of PBT/Epoxy blends showed that crystallization occurs in regime II. The fold surface free energy, sigma(e) = 101.7-58.0 x 10(-3) J/m(2), and work of chain folding, q = 5.79-3.30 kcal/mol, were determined. The equilibrium melting point depressions of PBT/Epoxy blends were observed and the Flory-Huggins interaction parameters were obtained.
Resumo:
The modification of high-impact polystyrene (HIPS) was accomplished by melt-grafting glycidyl methacrylate (GMA) on its molecular chains. Fourier transform infrared spectroscopy and electron spectroscopy for chemical analysis were used to characterize the formation of HIPS-g-GMA copolymers. The content of GMA in HIPS-g-GMA copolymer was determined by using the titration method. The effect of the concentrations of GMA and dicumyl peroxide on the degree of grafting was studied. A total of 1.9% of GMA can be grafted on HIPS. HIPS-g-GNU was used to prepare binary blends with poly(buthylene terephthalate) (PBT), and the evidence of reactions between the grafting copolymer and PBT in the blends was confirmed by scanning electron microscopy (SEM), dynamic mechanical analysis, and its mechanical properties. The SEM result showed that the domain size in PBT/HIPS-g-GMA blends was reduced significantly compared with that in PBT/HIPS blends; moreover, the improved strength was measured in PBT/HIPS-g-GMA blends and results from good interfacial adhesion. The reaction between ester groups of PBT and epoxy groups of HIPS-g-GMA can depress crystallinity and the crystal perfection of PBT.
Resumo:
The miscibility and mechanical properties of the blends of polybutylene terephthalate (PBT) and polypropylene (PP) with a liquid crystalline ionomer (LCI) containing a sulfonate group on the terminal unit as a compatibilizer were assessed. SEM and optical microscopy (POM) were used to examine the morphology of blends of PBT/PP compatibilized by LCI. DSC and TGA were used to discuss the thermal properties of PBT/PP blends with LCI and without LCI. The experimental results revealed that the LCI component affect, to a great extent, the miscibility and crystallization process and mechanical property of PBT/PP blends, The fact is that increasing LCI did improve miscibility of PBT/PP blends and the addition of 1% LCI to the PBT/PP blends increased the ultimate tensile strength and the ultimate elongation.
Resumo:
以过氧化二异丙苯 (DCP)为引发剂 ,甲基丙烯酸缩水甘油酯 (GMA)为活性单体 ,高抗冲苯乙烯(HIPS)通过熔融接枝制得了功能化的高抗冲聚苯乙烯接枝物 (HIPS g GMA)。用红外光谱和电子能谱对其结构进行了表征。HIPS g GMA的红外谱图 ,证明GMA已经接枝到HIPS上。电子能谱分析也提供了相似的结论。研究了单体浓度和DCP用量对产物接枝率的影响 ,并用化学滴定方法测定了接枝物的接枝率。用DSC、SEM、WAXD、DMA等研究了PBT/HIPS和PBT/HIPS g GMA的结晶、形态结构、动态力学性能及力学性能随组成的变化。SEM及DMA分析表明增容后体系的相容性得到改善 ,力学性能有较大提高。
Resumo:
Irradiation can be applied to crosslink the dispersed elastomer phase to increase the modulus and decrease the voiding ability of the elastomer, which results in increasing critical brittle-tough transition elastomer content at constant temperature. The experimental results show that at 25 degrees C the critical elastomer content of EPDM shifts to higher composition (shift of about 4 wt%) for PBT/EPDM blends after 100 kGy gamma-irradiation. (C) 1997 Elsevier Science Ltd.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.