777 resultados para PATHOGEN RECOGNITION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Innate immunity represents the first line of defence against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs) that recognise pathogen-associated molecular patterns (PAMPs) and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a nonredundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the cross-road between innate immunity, inflammation, and female fertility. Here, we review the studies on PTX3, with emphasis on pathogen recognition and cross-talk with other components of the innate immune system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the origin of the Pto disease resistance (R) gene that was previously identified in the wild tomato species Lycopersicon pimpinellifolium and isolated by map-based cloning. Pto encodes a serine-threonine protein kinase that specifically recognizes strains of Pseudomonas syringae pv. tomato (Pst) that express the avirulence gene avrPto. We examined an accession of the distantly related wild species Lycopersicon hirsutum var. glabratum that exhibits avrPto-specific resistance to Pst. The Pst resistance of L. hirsutum was introgressed into a susceptible Lycopersicon esculentum background to create the near-isogenic line 96T133-3. Resistance to Pst(avrPto) in 96T133-3 was inherited as a single dominant locus and cosegregated with a restriction fragment length polymorphism detected by the Pto gene. This observation suggested that a member of the Pto gene family confers Pst(avrPto) resistance in this L. hirsutum line. Here we report the cloning and characterization of four members of the Pto family from 96T133-3. One gene (LhirPto) is 97% identical to Pto and encodes a catalytically active protein kinase that elicits a hypersensitive response when coexpressed with avrPto in leaves of Nicotiana benthamiana. In common with the Pto kinase, the LhirPto protein physically interacts with AvrPto and downstream members of the Pto signaling pathway. Our studies indicate that R genes of the protein kinase class may not evolve rapidly in response to pathogen pressure and rather that their ability to recognize specific Avr proteins can be highly conserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Le virus de l’hépatite C (VHC) est un virus à ARN simple brin positif (ssARN) qui se replique dans le foie. Deux cents millions de personnes sont infectées par le virus dans le monde et environ 80% d’entre elles progresseront vers un stade chronique de l’infection. Les thérapies anti-virales actuelles comme l’interféron (IFN) ou la ribavirin sont de plus en plus utilisées mais ne sont efficaces que dans la moitié des individus traités et sont souvent accompagnées d’une toxicité ou d’effets secondaires indésirables. Le système immunitaire inné est essentiel au contrôle des infections virales. Les réponses immunitaires innées sont activées suite à la reconnaissance par les Pathogen Recognition Receptors (PRRs), de motifs macromoléculaires dérivés du virus appelés Pathogen-Associated Molecular Patterns (PAMPs). Bien que l'activation du système immunitaire par l'ARN ou les protéines du VHC ait été largement étudiée, très peu de choses sont actuellement connues concernant la détection du virus par le système immunitaire inné. Et même si l’on peut très rapidement déceler des réponses immunes in vivo après infection par le VHC, l’augmentation progressive et continue de la charge virale met en évidence une incapacité du système immunitaire à contrôler l’infection virale. Une meilleure compréhension des mécanismes d’activation du système immunitaire par le VHC semble, par conséquent, essentielle au développement de stratégies antivirales plus efficaces. Dans le présent travail nous montrons, dans un modèle de cellule primaire, que le génome ARN du VHC contient des séquences riches en GU capables de stimuler spécifiquement les récepteurs de type Toll (TLR) 7 et 8. Cette stimulation a pour conséquence la maturation des cellules dendritiques plasmacytoïdes (pDCs), le production d’interféron de type I (IFN) ainsi que l’induction de chémokines et cytokines inflammatoires par les différentes types de cellules présentatrices d’antigènes (APCs). Les cytokines produites après stimulation de monocytes ou de pDCs par ces séquences ssARN virales, inhibent la production du virus de façon dépendante de l’IFN. En revanche, les cytokines produites après stimulation de cellules dendritiques myéloïdes (mDCs) ou de macrophages par ces mêmes séquences n’ont pas d’effet inhibiteur sur la production virale car les séquences ssARN virales n’induisent pas la production d’IFN par ces cellules. Les cytokines produites après stimulation des TLR 7/8 ont également pour effet de diminuer, de façon indépendante de l’IFN, l’expression du récepteur au VHC (CD81) sur la lignée cellulaire Huh7.5, ce qui pourrait avoir pour conséquence de restreindre l’infection par le VHC. Quoiqu’il en soit, même si les récepteurs au VHC comme le CD81 sont largement exprimés à la surface de différentes sous populations lymphocytaires, les DCs et les monocytes ne répondent pas aux VHC, Nos résultats indiquent que seuls les macrophages sont capables de reconnaître le VHC et de produire des cytokines inflammatoires en réponse à ce dernier. La reconnaissance du VHC par les macrophages est liée à l’expression membranaire de DC-SIGN et l’engagement des TLR 7/8 qui en résulte. Comme d’autres agonistes du TLR 7/8, le VHC stimule la production de cytokines inflammatoires (TNF-α, IL-8, IL-6 et IL-1b) mais n’induit pas la production d’interféron-beta par les macrophages. De manière attendue, la production de cytokines par des macrophages stimulés par les ligands du TLR 7/8 ou les séquences ssARN virales n’inhibent pas la réplication virale. Nos résultats mettent en évidence la capacité des séquences ssARN dérivées du VHC à stimuler les TLR 7/8 dans différentes populations de DC et à initier une réponse immunitaire innée qui aboutit à la suppression de la réplication virale de façon dépendante de l’IFN. Quoiqu’il en soit, le VHC est capable d’échapper à sa reconnaissance par les monocytes et les DCs qui ont le potentiel pour produire de l’IFN et inhiber la réplication virale après engagement des TLR 7/8. Les macrophages possèdent quant à eux la capacité de reconnaître le VHC grâce en partie à l’expression de DC-SIGN à leur surface, mais n’inhibent pas la réplication du virus car ils ne produisent pas d’IFN. L’échappement du VHC aux défenses antivirales pourrait ainsi expliquer l’échec du système immunitaire inné à contrôler l’infection par le VHC. De plus, la production de cytokines inflammatoires observée après stimulation in vitro des macrophages par le VHC suggère leur potentielle contribution dans l’inflammation que l’on retrouve chez les individus infectés par le VHC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reactive oxygen intermediates (ROI) play a critical role in the defense of plants against invading pathogens. Produced during the “oxidative burst,” they are thought to activate programmed cell death (PCD) and induce antimicrobial defenses such as pathogenesis-related proteins. It was shown recently that during the interaction of plants with pathogens, the expression of ROI-detoxifying enzymes such as ascorbate peroxidase (APX) and catalase (CAT) is suppressed. It was suggested that this suppression, occurring upon pathogen recognition and coinciding with an enhanced rate of ROI production, plays a key role in elevating cellular ROI levels, thereby potentiating the induction of PCD and other defenses. To examine the relationship between the suppression of antioxidative mechanisms and the induction of PCD and other defenses during pathogen attack, we studied the interaction between transgenic antisense tobacco plants with reduced APX or CAT and a bacterial pathogen that triggers the hypersensitive response. Transgenic plants with reduced capability to detoxify ROI (i.e., antisense APX or CAT) were found to be hyperresponsive to pathogen attack. They activated PCD in response to low amounts of pathogens that did not trigger the activation of PCD in control plants. Our findings support the hypothesis that suppression of ROI-scavenging enzymes during the hypersensitive response plays an important role in enhancing pathogen-induced PCD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many pathogen recognition genes, such as plant R-genes, undergo rapid adaptive evolution, providing evidence that these genes play a critical role in plant-pathogen coevolution. Surprisingly, whether rapid adaptive evolution also occurs in genes encoding other kinds of plant defense proteins is unknown. Unlike recognition proteins, plant chitinases attack pathogens directly, conferring disease resistance by degrading chitin, a component of fungal cell walls. Here, we show that nonsynonymous substitution rates in plant class I chitinase often exceed synonymous rates in the plant genus Arabis (Cruciferae) and in other dicots, indicating a succession of adaptively driven amino acid replacements. We identify individual residues that are likely subject to positive selection by using codon substitution models and determine the location of these residues on the three-dimensional structure of class I chitinase. In contrast to primate lysozymes and plant class III chitinases, structural and functional relatives of class I chitinase, the adaptive replacements of class I chitinase occur disproportionately in the active site cleft. This highly unusual pattern of replacements suggests that fungi directly defend against chitinolytic activity through enzymatic inhibition or other forms of chemical resistance and identifies target residues for manipulating chitinolytic activity. These data also provide empirical evidence that plant defense proteins not involved in pathogen recognition also evolve in a manner consistent with rapid coevolutionary interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), IFN-β, or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death whereas wild-type (WT) congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre(+) Ifnar(f/f) or LysM Cre(+) Ifnar(f/f)) did not sustain enhanced disease with OROV or La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar(-/-) mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar(-/-) bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV virus infection and tissue injury, and suggest that IFN signaling in non-myeloid cells contributes to the host defense against orthobunyaviruses. Oropouche virus (OROV) is an emerging arthropod-transmitted orthobunyavirus that causes episodic outbreaks of a debilitating febrile illness in humans in countries of South and Central America. The continued expansion of the range and number of its arthropod vectors increases the likelihood that OROV will spread into new regions. At present, the pathogenesis of OROV in humans or other vertebrate animals remains poorly understood. To define cellular mechanisms of control of OROV infection, we performed infection studies in a series of primary cells and mice that were deficient in key innate immune genes involved in pathogen recognition and control. Our results establish that a MAVS-dependent type I IFN signaling pathway has a dominant role in restricting OROV infection and pathogenesis in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73 +/- 12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-gamma secretion, ratios of IFN-gamma/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNF alpha/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-gamma/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

N-Acetylglucosamine (GlcNAc) is the major immunoepitope of group A streptococcal cell wall carbohydrates. Antistreptococcal antibodies cross-reactive with anti-GlcNAc and laminin are present in sera of patients with rheumatic fever. The cross-reactivity of these antibodies with human heart valvular endothelium and the underlying basement membrane has been suggested to be a possible cause of immune-mediated valve lesion. Mannose-binding lectin (MBL) encoded by the MBL2 gene, a soluble pathogen recognition receptor, has high affinity for GlcNAc. We postulated that mutations in exon 1 of the MBL2 gene associated with a deficient serum level of MBL may contribute to chronic severe aortic regurgitation (AR) of rheumatic etiology. We studied 90 patients with severe chronic AR of rheumatic etiology and 281 healthy controls (HC) for the variants of the MBL2 gene at codons 52, 54, and 57 by using a PCR-restriction fragment length polymorphism-based method. We observed a significant difference in the prevalence of defective MBL2 alleles between patients with chronic severe AR and HC. Sixteen percent of patients with chronic severe AR were homozygotes or compound heterozygotes for defective MBL alleles in contrast to 5% for HC (P = 0.0022; odds ratio, 3.5 [ 95% confidence interval, 1.6 to 7.7]). No association was detected with the variant of the MASP2 gene. Our study suggests that MBL deficiency may contribute to the development of chronic severe AR of rheumatic etiology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arenaviruses are a large and diverse family of viruses that merit significant attention as causative agents of severe hemorrhagic fevers in humans. Lassa virus (LASV) in Africa and the South American hemorrhagic fever viruses Junin (JUNV), Machupo (MACV), and Guanarito (GTOV) have emerged as important human pathogens and represent serious public health problems in their respective endemic areas. A hallmark of fatal arenaviruses hemorrhagic fevers is a marked immunosuppression of the infected patients. Antigen presenting cells (APCs) such as macrophages and in particular dendritic cells (DCs) are early and preferred targets of arenaviruses infection. Instead of being recognized and presented as foreign antigens by DCs, arenaviruses subvert the normal mechanisms of pathogen recognition, invade DCs and establish a productive infection. Viral replication perturbs the DCs' ability to present antigens and to activate T and B cells, contributing to the marked virus-induced immunosuppression observed in fatal disease. Considering their crucial role in the development of an anti-viral immune response, the mechanisms by which arenaviruses, and in particular LASV, invade DCs are of particular interest. The C-type lectin DC-specific Intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) was recently identified as a potential entry receptor for LASV. The first project of my thesis focused therefore on the investigation of the role of DC-SIGN in LASV entry into primary human DCs. My data revealed that DC-SIGN serves as an attachment factor for LASV on human DCs and can facilitate capture of free virus and subsequent cell entry. However, in contrast to other emerging viruses, of the phlebovirus family, I found that DC-SIGN does likely not function as an authentic entry receptor for LASV. Moreover, I was able to show that LASV enters DCs via an unusually slow pathway that depends on actin, but is independent of clathrin and dynamin. Considering the lack of effective treatments and the limited public health infrastructure in endemic regions, the development of protective vaccines against arenaviruses is an urgent need. To address this issue, the second project of my thesis aimed at the development of a novel recombinant arenavirus vaccine based on a nanoparticle (NPs) platform and its evaluation in a small animal model. During the first phase of the project I designed, produced, and characterized suitable vaccine antigens. In the second phase of the project, I generated antigen-conjugated NPs, developed vaccine formulations, and tested the NPs for their ability to elicit anti-viral T cell responses as well as anti-viral antibodies. I demonstrated that the NPs platform is able to activate both cellular and humoral branches of the adaptive anti-viral immunity, providing proof-of-principle. In sum, my first project will allow, in a long term perspective, a better understanding of the viral pathogenesis and contribute to the development of novel antiviral strategies. The second project will expectidly offer a new treatment option against arenaviruses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To orchestrate immune responses, pathogen-recognition receptors have evolved sophisticated strategies to monitor pathogenic processes. In this issue of Cell Host & Microbe, a study by Cho et al. reveals a mechanism of immune recognition that relies on the sensing of cholera toxin within the endoplasmic reticulum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nucleotide-binding domain and leucine-rich repeat containing receptors (NLRs) are intracellular proteins mainly involved in pathogen recognition, inflammatory responses, and cell death. Until recently, the function of the family member NLR caspase recruitment domain (CARD) containing 5 (NLRC5) has been a matter of debate. It is now clear that NLRC5 acts as a transcriptional regulator of the major-histocompatibility complex class I. In this review we detail the development of our understanding of NLRC5 function, discussing both the accepted and the controversial aspects of NLRC5 activity. We give insight into the molecular mechanisms, and the potential implications, of NLRC5 function in health and disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Caspase 1 is part of the inflammasome, which is assembled upon pathogen recognition, while caspases 3 and/or 7 are mediators of apoptotic and nonapoptotic functions. PARP1 cleavage is a hallmark of apoptosis yet not essential, suggesting it has another physiological role. Here we show that after LPS stimulation, caspase 7 is activated by caspase 1, translocates to the nucleus, and cleaves PARP1 at the promoters of a subset of NF-κB target genes negatively regulated by PARP1. Mutating the PARP1 cleavage site D214 renders PARP1 uncleavable and inhibits PARP1 release from chromatin and chromatin decondensation, thereby restraining the expression of cleavage-dependent NF-κB target genes. These findings propose an apoptosis-independent regulatory role for caspase 7-mediated PARP1 cleavage in proinflammatory gene expression and provide insight into inflammasome signaling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Toll-like receptors (TLRs) are critical components for host pathogen recognition and variants in genes participating in this response influence susceptibility to infections. Recently, TLR1 gene polymorphisms have been found correlated with whole blood hyper-inflammatory responses to pathogen-associated molecules and associated with sepsis-associated multiorgan dysfunction and acute lung injury (ALI). We examined the association of common variants of TLR1 gene with sepsis-derived complications in an independent study and with serum levels for four inflammatory biomarker among septic patients. Methodology/Principal Findings: Seven tagging single nucleotide polymorphisms of the TLR1 gene were genotyped in samples from a prospective multicenter case-only study of patients with severe sepsis admitted into a network of intensive care units followed for disease severity. Interleukin (IL)-1 b, IL-6, IL-10, and C-reactive protein (CRP) serum levels were measured at study entry, at 48 h and at 7th day. Alleles -7202G and 248Ser, and the 248Ser-602Ile haplotype were associated with circulatory dysfunction among severe septic patients (0.001<=p <= 0.022), and with reduced IL-10 (0.012<= p <=0.047) and elevated CRP (0.011<= p <=0.036) serum levels during the first week of sepsis development. Additionally, the -7202GG genotype was found to be associated with hospital mortality (p =0.017) and ALI (p =0.050) in a combined analysis with European Americans, suggesting common risk effects among studies Conclusions/Significance: These results partially replicate and extend previous findings, supporting that variants of TLR1 gene are determinants of severe complications during sepsis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alveolar macrophages ( AM) are the first host cells to interact with Paracoccidioides brasiliensis (Pb), a primary human pathogen that causes severe pulmonary infections in Latin America. To better understand innate immunity in pulmonary paracoccidioidomycosis, we decided to study the fungicidal and secretory abilities of AM from resistant (A/J) and susceptible (B10.A) mice to infection. Untreated, IFN-gamma and IL-12 primed AM from B10. A and A/J mice were challenged with P. brasiliensis yeasts and cocultured for 72 h. B10. A macrophages presented an efficient fungicidal ability, were easily activated by both cytokines, produced high levels of nitric oxide ( NO), IL-12, and MCP-1 associated with low amounts of IL-10 and GM-CSF. In contrast, A/J AM showed impaired cytokine activation and fungal killing, secreted high levels of IL- 10 and GM-CSF but low concentrations of NO, IL- 12, and MCP-1. The fungicidal ability of B10. A but not of A/J macrophages was diminished by aminoguanidine treatment, although only the neutralization of TGF-beta restored the fungicidal activity of A/J cells. This pattern of macrophage activation resulted in high expression of MHC class II antigens by A/J cells, while B10. A macrophages expressed elevated levels of CD40. Unexpectedly, our results demonstrated that susceptibility to a fungal pathogen can be associated with an efficient innate immunity, while a deficient innate response can ultimately favor the development of a resistant pattern to infection. Moreover, our data suggest that different pathogen recognition receptors are used by resistant and susceptible hosts to interact with P. brasiliensis yeasts, resulting in divergent antigen presentation, acquired immunity, and disease outcomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introdução: Imunidade inata é a primeira linha de defesa do hospedeiro contra microorganismos invasores, a qual é mediada por moléculas específicas que reconhecem patógenos, chamadas receptores toll-símile (TLRs). Os TLRs são também capazes de reconhecer ligantes endógenos, tais como conteúdos de células necróticas e proteínas de choque térmico (HSP), resultando na produção de citocinas e ativação do sistema imune adquirido. A função exata dos TLRs ainda é pouco entendida em transplante de órgãos. No entanto, tem sido sugerido que eles podem estar envolvidos na rejeição aguda ou crônica e atuar na resposta do enxerto a lesão por isquemia e reperfusão. Objetivo: Examinar as alterações na expressão gênica dos TLRs durante a fase inicial do transplante pulmonar em humanos e sua relação com citocinas potencialmente envolvidas na lesão por isquemia e reperfusão em transplante de órgãos. Métodos: Foram analisadas biópsias pulmonares de 14 pacientes submetidos a transplante pulmonar (LTx). Estas amostras foram coletadas no final do período de isquemia fria (TIF, n=14), no final do período de isquemia quente (TIQ, n=13),1 hora (n=12) e 2 horas (n=8) após a reperfusão do enxerto. RNA total foi isolado a partir de tecido pulmonar e os níveis de RNA mensageiro (mRNA) dos TLRs (1-10) bem como citocinas (IL-8, IL-6, IL-10, IFN-γ, IL-1β) e proteína de choque térmico 70 (HSP70) foram medidos por reação em cadeia pela polimerase em tempo real. Resultados: Foi detectada a expressão de mRNA de todos TLRs em tecido pulmonar. Nas amostras no TIF, os níveis de mRNA dos TLRs apresentaram-se com diferentes expressões gênicas. Os níveis de expressão dos TLRs, com exceção para o TLR3, estavam altamente correlacionados entre si no TIF e com os níveis de mRNA de IFN-γ, IL-10 e IL-1β e menos significativamente com os níveis de IL-6 e IL-8. Houve diminuição dos níveis de mRNA na grande maioria dos TLRs após reperfusão, o que foi diferente para a maioria das citocinas e HSP70, que apresentaram tendência a aumentar após transplante. A expressão gênica de TLR4 apresentou-se correlacionada com os níveis de IL-8 e IL-1β antes e após transplante (P<0.05). Pulmões de doadores que foram intubados por períodos acima de 72 horas (n=5) apresentaram níveis mais elevados de TLR2 e TLR10 (P<0.05). Conclusão: Pela primeira vez, foi demonstrado que a expressão dos TLRs altera-se durante o período de isquemia e reperfusão em transplante pulmonar em humanos. O tempo de intubação dos doadores pulmonares pode influenciar a expressão de receptores Toll-símile específicos. A correlação entre TLR4 e IL-8/IL-1β sugere que os TLRs pulmonares podem ter alguma função na resposta precoce do enxerto.