999 resultados para PARTICLE-ATTACHED BACTERIA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diversity of particle-attached and free-living marine bacteria in Victoria Harbor, Hong Kong, and its adjacent coastal and estuarial environments was investigated using DNA fingerprinting and clone library analysis. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes showed that bacterial communities in three stations of Victoria Harbor were similar, but differed from those in adjacent coastal and estuarine stations. Particle-attached and free-living bacterial community composition differed in the Victoria Harbor area. DNA sequencing of 28 bands from DGGE gel showed Alphaproteobacteria was the most abundant group, followed by the Bacteroidetes, and other Proteobacteria. Bacterial species richness (number of DGGE bands) differed among stations and populations (particle-attached and free-living; bottom and surface). BIOENV analysis indicated that the concentrations of suspended solids were the major contributing parameter for the spatial variation of total bacterial community structure. Samples from representative stations were selected for clone library (548 clones) construction and their phylogenetic distributions were similar to those of sequences from DGGE. Approximately 80% of clones were affiliated to Proteobacteria, Bacteroidetes and Cyanobacteria. The possible influences of dynamic pollution and hydrological conditions in the Victoria Harbor area on the particle-attached and free-living bacterial community structures were discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diversity of particle-attached and free-living marine bacteria in Victoria Harbor, Hong Kong, and its adjacent coastal and estuarial environments was investigated using DNA fingerprinting and clone library analysis. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes showed that bacterial communities in three stations of Victoria Harbor were similar, but differed from those in adjacent coastal and estuarine stations. Particle-attached and free-living bacterial community composition differed in the Victoria Harbor area. DNA sequencing of 28 bands from DGGE gel showed Alphaproteobacteria was the most abundant group, followed by the Bacteroidetes, and other Proteobacteria. Bacterial species richness (number of DGGE bands) differed among stations and populations (particle-attached and free-living; bottom and surface). BIOENV analysis indicated that the concentrations of suspended solids were the major contributing parameter for the spatial variation of total bacterial community structure. Samples from representative stations were selected for clone library (548 clones) construction and their phylogenetic distributions were similar to those of sequences from DGGE. Approximately 80% of clones were affiliated to Proteobacteria, Bacteroidetes and Cyanobacteria. The possible influences of dynamic pollution and hydrological conditions in the Victoria Harbor area on the particle-attached and free-living bacterial community structures were discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the frame of the European Project on Ocean Acidification (EPOCA), the response of an Arctic pelagic community (<3 mm) to a gradient of seawater pCO(2) was investigated. For this purpose 9 large-scale in situ mesocosms were deployed in Kongsfjorden, Svalbard (78 degrees 56.2' N, 11 degrees 53.6' E), in 2010. The present study investigates effects on the communities of particle-attached (PA; >3 mu m) and free-living (FL; <3 mu m > 0.2 mu m) bacteria by Automated Ribosomal Intergenic Spacer Analysis (ARISA) in 6 of the mesocosms, ranging from 185 to 1050 mu atm initial pCO(2), and the surrounding fjord. ARISA was able to resolve, on average, 27 bacterial band classes per sample and allowed for a detailed investigation of the explicit richness and diversity. Both, the PA and the FL bacterioplankton community exhibited a strong temporal development, which was driven mainly by temperature and phytoplankton development. In response to the breakdown of a picophytoplankton bloom, numbers of ARISA band classes in the PA community were reduced at low and medium CO2 (similar to 185-685 mu atm) by about 25 %, while they were more or less stable at high CO2 (similar to 820-1050 mu atm). We hypothesise that enhanced viral lysis and enhanced availability of organic substrates at high CO2 resulted in a more diverse PA bacterial community in the post-bloom phase. Despite lower cell numbers and extracellular enzyme activities in the post-bloom phase, bacterial protein production was enhanced in high CO2 mesocosms, suggesting a positive effect of community richness on this function and on carbon cycling by bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os estuários são ecossistemas complexos, onde os processos físicos, químicos e biológicos estão intimamente ligados. A dinâmica bacteriana num estuário reflete a interação e a elevada variação temporal e espacial desses processos. Este trabalho teve como objetivo elucidar as interações entre os processos físicos, fotoquímicos e microbiológicos no sistema estuarino da Ria de Aveiro (Portugal). Para tal, foi realizada uma abordagem inicial no campo, durante a qual as comunidades bacterianas na coluna de água foram caracterizadas em termos de abundância e atividade ao longo de 2 anos. O estudo foi realizado em dois locais distintos, escolhidos por tipificarem as características marinhas e salobras do estuário. Estes locais possuem diferentes hidrodinâmicas, influências fluviais e, quantidade e composição de matéria orgânica. Numa perspectiva mecanicista, foram realizadas simulações laboratoriais no sentido de elucidar a resposta das bactérias à matéria orgânica foto-transformada. As comunidades bacterianas no estuário adaptam-se a diferentes regimes de água doce, desenvolvendo padrões de abundância e atividade distintos nas zonas marinha e salobra. Os elevados caudais dos rios induzem estratificação vertical na zona marinha, promovendo o fluxo de fitoplâncton do mar para o estuário, do bacterioplâncton do estuário para o mar, e estimulam a importação de bactérias aderentes a partículas na zona salobra. O transporte advectivo e os processos de ressuspensão contribuem para aumentar 3 vezes o número de bactérias aderentes a partículas durante os períodos de intensas descargas fluviais. Adicionalmente, a atividade bacteriana no estuário é controlada pela concentração de azoto inerente à variações de água doce. O fornecimento de azoto em associação com a fonte dos substratos bacterianos induzem alterações significativas na produtividade. O padrão de variação vertical de comunidades bacterianas foi distinto nas duas zonas do estuário. Na zona marinha, as bactérias na microcamada superficial (SML) apresentaram taxas de hidrólise mais elevadas, mas menores taxas de incorporação de monómeros e produção de biomassa que na água subjacente (UW), enquanto na zona salobra, as taxas de hidrólise e incorporação foram similares nos dois compartimentos, mas a produtividade foi significativamente mais elevada na SML. Apesar da abundância bacteriana ter sido semelhante na SML e UW, a fração de células aderentes a partículas foi significativamente maior na SML (2-3 vezes), em ambas as zonas do estuário. A integração dos resultados microbiológicos com as variáveis ambientais e hidrológicos mostraram que fortes correntes na zona marinha promovem a mistura vertical, inibindo o estabelecimento de uma comunidade bacteriana na SML distinta da UW. Em contraste, na zona de água salobra, a menor velocidades das correntes fornece as condições adequadas ao aumento da atividade bacteriana na SML. Características específicas do local, tais como a hidrodinâmica e as fontes e composição da matéria orgânica, conduzem também a diferentes graus de enriquecimento superficial de matéria orgânica e inorgânica, influenciando a sua transformação. Em geral, o ambiente da SML estuarina favorece a hidrólise de polímeros, mas inibe a utilização de monómeros, comparativamente com água subjacente. No entanto, as diferenças entre as duas comunidades tendem a atenuar-se com o aumento da atividade heterotrófica na zona salobra. A matéria orgânica dissolvida cromófora (CDOM) das duas zonas do estuário possui diferentes características espectrais, com maior aromaticidade e peso molecular médio (HMW) na zona de água salobra, em comparação com a zona marinha. Nesta zona, a abundância bacteriana correlacionou-se com a350 e a254, sugerindo uma contribuição indireta das bactéria para HMW CDOM. A irradiação do DOM resultou numa diminuição dos valores de a254 e a350, e, em um aumento do declive S275-295 e dos rácios E2:E3 (a250/a365) e SR. No entanto, a extensão de transformações foto-induzidas e as respostas microbianas são dependentes das características iniciais CDOM, inferidas a partir das suas propriedades ópticas. A dinâmica estuarina influencia claramente as atividades heterotróficas e a distribuição dos microorganismos na coluna de água. A entrada de água doce influencia a dinâmica e os principais reguladores das comunidades bacterianas no estuário. Os processos fotoquímicos e microbianos produzem alterações nas propriedades ópticas da CDOM e a combinação desses processos determina o resultado global e o destino da CDOM nos sistemas estuarinos com influência na produtividade nas áreas costeiras adjacente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterotrophic bacterial and phytoplankton biomass, production, specific growth rates, and growth efficiencies were studied in the Northern region of the Cananeia-Iguape estuarine system, which has recently experienced an intense eutrophication due to anthropogenic causes. Two surveys were carried out during spring and neap tide periods of the dry season of 2005 and the rainy season of 2006. This region receives large freshwater inputs with organic seston and phosphate concentrations that reach as high as 1.0 mg l(-1) and 20.0 mu M, respectively. Strong decreasing gradients of seston and dissolved inorganic nutrients were observed from the river/estuary boundary to the estuary/coastal interface. Gradients were also observed in phytoplankton and bacterial production rates. The production rates of phytoplankton were 5.6-fold higher (mean 8.5 mu g Cl(-1) h(-1)) during the dry season. Primary production rates (PP) positively correlated with salinity and euphoric depth, indicating that phytoplankton productivity was light-limited. On the other hand, bacterial biomass (BB) and production rates (BP) were 1.9- and 3.7-fold higher, respectively, during the rainy season, with mean values of up to 40.4 mu g Cl(-1) and 7.9 mu g Cl(-1) h-1, respectively. Despite such a high BP, bacterial abundance remained <2 x 106 cells ml(-1), indicating that bacterial production and removal were coupled. Mean specific growth rates ranged between 0.9 and 5.5 d(-1). BP was inversely correlated with salinity and positively correlated with temperature, organic matter, exopolymer particles, and particulate-attached bacteria; this last accounted for as much as 89.6% of the total abundance. During the rainy season, BP was generally much higher than PP, and values of BP/PP > 20 were registered during high freshwater input, suggesting that under these conditions, bacterial activity was predominantly supported by allochthonous inputs of organic carbon. In addition, BB probably represented the main pathway for the synthesis of high-quality (low C:N) biomass that may have been available to the heterotrophic components of the plankton food web, particularly nanoheterotrophs. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterotrophic bacterial and biomass, production, specific growth rates and growth efficiencies were studied in July 2001 and January 2002 during both spring and neap tides, along a tidal cycle, at three sites in a subtropical estuary. Major freshwater inputs located in the Northern region led to differences in both and bacterioplankton biomass and activity along the estuary. While in the Northern region is light-limited, with mean production (PP) between 1.1 and 1.9 mu g C l(-1) h(-1) and mean specific growth rates (PSG) between 0.14 and 0.16 d(-1), the Southern region registered values as high as 24.7 mu g C l(-1) h(-1) for PP and 2.45 d(-1) (mean PP between 3.4 and 7.3 mu g C l(-1) h(-1); mean PSG between 0.28 and 0.57 d(-1)). On the other hand, maximum bacterial production (BP: 63.8 mu g C l(-1) h(-1)) and specific growth rate (BSG: 32.26 d(-1)) were observed in the Northern region (mean BP between 3.4 and 12.8 mu g C l(-1) h(-1); mean BSG between 1.98 and 6.67 day(-1)). These bacterial activity rates are among the highest recorded rates in estuarine and coastal waters, indicating that this system can be highly heterotrophic, due to high loads of allochthonous carbon (mainly derived from mangrove forest). Our results also showed that, despite that BP rates usually exceeded PP, in the Southern region BP may be partially supported (similar to 45%) by PP, since a significant regression was observed between BP and PP (r = 0.455, P < 0.001).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of alkaline phosphatase activity (APA) that hydrolyses organic phosphorus into phosphate (PO4) is commonly related to PO4 deficiency of oceanic, coastal and fresh waters. APA is almost never investigated in PO4-rich estuaries, since very low activities are expected to occur. As a consequence, microbial mineralization of organic phosphorus into PO4 has often been ignored in estuaries. In this study, we examined the importance of potential APA and the associated microbial dynamics in two estuaries, the Aulne and the Elorn (Northwestern France), presenting two different levels of PO4 concentrations. Unexpected high potential APA was observed in both estuaries. Values ranged from 50 to 506 nmol L−1 h−1, which range is usually found in very phosphorus-limited environments. High potential APA values were observed in the oligohaline zone (salinity 5–15) in spring and summer, corresponding to a PO4 peak and a maximum bacterial production of particle-attached bacteria. In all cases, high potential APA was associated with high suspended particulate matter and total particulate phosphorus. The low contribution of the 0.2–1 μm fraction to total APA, the strong correlation between particulate APA and bacterial biomass, and the close relationship between the production of particle-attached bacteria and APA, suggested that high potential APA is mainly due to particle-attached bacteria. These results suggest that the microbial mineralization of organic phosphorus may contribute to an estuarine PO4 production in spring and summer besides physicochemical processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of pressure on upper ocean free-living bacteria and bacteria attached to rapidly sinking particles was investigated through studying their ability to synthesize DNA and protein by measuring their rate of 3H-thymidine and 3H-leucine incorporation. Studies were carried out on samples from the NE Atlantic under the range of pressures (1–430 atm) encountered by sinking aggregates during their journey to the deep-sea bed. Thymidine and leucine incorporation rates per bacterium attached to sinking particles from 200 m were about six and ten times higher, respectively, than the free-living bacterial assemblage. The ratio of leucine incorporation rate per cell to thymidine incorporation rate per cell was significantly different between the larger attached (18.9:1) and smaller free-living (10.4:1) assemblages. The rates of leucine and thymidine incorporation decreased exponentially with increasing pressure for the free-living and linearly for attached bacteria, while there was no significant influence of pressure on cell numbers. At 100 atm leucine and thymidine incorporation rate per free-living bacterium was reduced to 73 and 20%, respectively, relative to that measured at 1 atm. Pressure of 100 atm reduced leucine and thymidine incorporation per attached bacterium to 94 and 70%, and at 200 atm these rates were reduced to 34 and 51%, respectively, relative to those measured at 1 atm. There was no significant uncoupling of thymidine and leucine incorporation for either the free-living or attached bacterial assemblages with increasing pressure, indicating that the processess of DNA and protein synthesis may be equally affected by increasing pressure. It is therefore unlikely that bacteria, originating from surface waters, attached to rapidly sinking particles play a role in particle remineralization below approximately 1000–2000 m. These results may help to explain the occurrence of relatively fresh aggregates on the deep-sea bed that still contain sufficient organic carbon to fuel the rapid growth of benthic micro-organisms; they also indicate that the effect of pressure on microbial processes may be important in oceanic biogeochemical cycles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new protocol was developed to detach bacteria from seagrass tissue and subsequently enumerate cells using flow cytometry (FCM). A method involving addition of the surfactant Tween 80 and vortexing resulted in maximum detachment efficiency of seagrass attached bacteria, providing a robust protocol for precisely enumerating seagrass-associated bacteria with FCM. Using this approach we detected cell concentrations between 2.0×10(5) and 8.0×10(6)cells mg(-1) DW tissue.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vertical carbon fluxes between the surface and 2500 m depth were estimated from in situ profiles of particle size distributions and abundances me/asured off Cape Blanc (Mauritania) related to deep ocean sediment traps. Vertical mass fluxes off Cape Blanc were significantly higher than recent global estimates in the open ocean. The aggregates off Cape Blanc contained high amounts of ballast material due to the presence of coccoliths and fine-grained dust from the Sahara desert, leading to a dominance of small and fast-settling aggregates. The largest changes in vertical fluxes were observed in the surface waters (<250 m), and, thus, showing this site to be the most important zone for aggregate formation and degradation. The degradation length scale (L), i.e. the fractional degradation of aggregates per meter settled, was estimated from vertical fluxes derived from the particle size distribution through the water column. This was compared with fractional remineralization rate of aggregates per meter settled derived from direct ship-board measurements of sinking velocity and small-scale O2 fluxes to aggregates measured by micro-sensors. Microbial respiration by attached bacteria alone could not explain the degradation of organic matter in the upper ocean. Instead, flux feeding from zooplankton organisms was indicated as the dominant degradation process of aggregated carbon in the surface ocean. Below the surface ocean, microbes became more important for the degradation as zooplankton was rare at these depths.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research examines three potential mechanisms by which bacteria can adapt to different temperatures: changes in strain-level population structure, gene regulation and particle colonization. For the first two mechanisms, I utilize bacterial strains from the Vibrionaceae family due to their ease of culturability, ubiquity in coastal environments and status as a model system for marine bacteria. I first examine vibrio seasonal dynamics in temperate, coastal water and compare the thermal performance of strains that occupy different thermal environments. Our results suggest that there are tradeoffs in adaptation to specific temperatures and that thermal specialization can occur at a very fine phylogenetic scale. The observed thermal specialization over relatively short evolutionary time-scales indicates that few genes or cellular processes may limit expansion to a different thermal niche. I then compare the genomic and transcriptional changes associated with thermal adaptation in closely-related vibrio strains under heat and cold stress. The two vibrio strains have very similar genomes and overall exhibit similar transcriptional profiles in response to temperature stress but their temperature preferences are determined by differential transcriptional responses in shared genes as well as temperature-dependent regulation of unique genes. Finally, I investigate the temporal dynamics of particle-attached and free-living bacterial community in coastal seawater and find that microhabitats exert a stronger forcing on microbial communities than environmental variability, suggesting that particle-attachment could buffer the impacts of environmental changes and particle-associated communities likely respond to the presence of distinct eukaryotes rather than commonly-measured environmental parameters. Integrating these results will offer new perspectives on the mechanisms by which bacteria respond to seasonal temperature changes as well as potential adaptations to climate change-driven warming of the surface oceans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this thesis project is to study changes in the physical state of cell membranes during cell entry, including how these changes are connected to the presence of ceramide. The role of enzymatical manipulation of lipids in bacterial internalization is also studied. A novel technique, where a single giant vesicle is chosen under the microscope and an enzyme coupled-particle attached to the micromanipulator pipette towards the vesicle, is used. Thus, the enzymatic reaction on the membrane of the giant vesicle can be followed in real-time. The first aim of this study is to develop a system where the localized sphingomyelinase membrane interaction could be observed on the surface of the giant vesicle and the effects could be monitored with microscopy. Domain formation, which resembles acid sphingomyelinase (ASMase), causes CD95 clustering in the cell membrane due to ceramide production (Grassmé et al., 2001a; Grassmé et al., 2001b) and the formation of small vesicles inside the manipulated giant vesicle is observed. Sphingomyelinase activation has also been found to be an important factor in the bacterial and viral invasion process in nonphagocytic cells (Grassmé et al., 1997; Jan et al., 2000). Accordingly, sphingomyelinase reactions in the cell membrane might also give insight into bacterial or viral cellular entry events. We found sphingomyelinase activity in Chlamydia pneumonia elementarybodies (EBs). Interestingly, the bacterium enters host cells by endocytosis but the internalization mechanism of Chlamydia is unknown. The hypothesis is that sphingomyelin is needed for host cell entry in the infection of C. pneumonia. The second project focuses on this subject. The goal of the third project is to study a role of phosphatidylserine as a target for a membrane binding protein. Phosphatidylserine is chosen because of its importance in fusion processes. This will be another example for the importance of lipids in cell targeting, internalization, and externalization.