591 resultados para PARIETAL
Resumo:
Sensory-motor circuits course through the parietal cortex of the human and monkey brain. How parietal cortex manipulates these signals has been an important question in behavioral neuroscience. This thesis presents experiments that explore the contributions of monkey parietal cortex to sensory-motor processing, with an emphasis on the area's contributions to reaching. First, it is shown that parietal cortex is organized into subregions devoted to specific movements. Area LIP encodes plans to make saccadic eye movements. A nearby area, the parietal reach region (PRR), plans reaches. A series of experiments are then described which explore the contributions of PRR to reach planning. Reach plans are represented in an eye-centered reference frame in PRR. This representation is shown to be stable across eye movements. When a sequence of reaches is planned, only the impending movement is represented in PRR, showing that the area is more related to movement planning than to storing the memory of reach targets. PRR resembles area LIP in each of these properties: the two areas may provide a substrate for hand-eye coordination. These findings yield new perspectives on the functions of the parietal cortex and on the organization of sensory-motor processing in primate brains.
Resumo:
In the last decade, research efforts into directly interfacing with the neurons of individuals with motor deficits have increased. The goal of such research is clear: Enable individuals affected by paralysis or amputation to regain control of their environments by manipulating external devices with thought alone. Though the motor cortices are the usual brain areas upon which neural prosthetics depend, research into the parietal lobe and its subregions, primarily in non-human primates, has uncovered alternative areas that could also benefit neural interfaces. Similar to the motor cortical areas, parietal regions can supply information about the trajectories of movements. In addition, the parietal lobe also contains cognitive signals like movement goals and intentions. But, these areas are also known to be tuned to saccadic eye movements, which could interfere with the function of a prosthetic designed to capture motor intentions only. In this thesis, we develop and examine the functionality of a neural prosthetic with a non-human primate model using the superior parietal lobe to examine the effectiveness of such an interface and the effects of unconstrained eye movements in a task that more closely simulates clinical applications. Additionally, we examine methods for improving usability of such interfaces.
The parietal cortex is also believed to contain neural signals relating to monitoring of the state of the limbs through visual and somatosensory feedback. In one of the world’s first clinical neural prosthetics based on the human parietal lobe, we examine the extent to which feedback regarding the state of a movement effector alters parietal neural signals and what the implications are for motor neural prosthetics and how this informs our understanding of this area of the human brain.
Resumo:
Homenaje a Ignacio Barandiarán Maestu / coord. por Javier Fernández Eraso, Juan Santos Yanguas
Resumo:
In sensorimotor integration, sensory input and motor output signals are combined to provide an internal estimate of the state of both the world and one's own body. Although a single perceptual and motor snapshot can provide information about the current state, computational models show that the state can be optimally estimated by a recursive process in which an internal estimate is maintained and updated by the current sensory and motor signals. These models predict that an internal state estimate is maintained or stored in the brain. Here we report a patient with a lesion of the superior parietal lobe who shows both sensory and motor deficits consistent with an inability to maintain such an internal representation between updates. Our findings suggest that the superior parietal lobe is critical for sensorimotor integration, by maintaining an internal representation of the body's state.
Resumo:
This research is focused on the contribution of area 7 to the short-term visual spatial memory. Three rhesus monkeys (Macaca mulatta) were trained in the direct delayed response task in which 5 delay intervals were used in each session. When each monkey reached the criterion of 90% correct responses in 5 successive sessions, two monkeys underwent a surgery while the other one received a sham operation as a control. In the first stage of the surgery, bilateral areas 7a, 7b and 7ip of the parietal cortex of two monkeys were precisely lesioned. After 7 days of recuperation, the monkeys were required to do the same task. The average percentage of correct responses in the lesioned animals decreased from 94.7% to 89.3% and 93.3% to 82.0% respectively (no significance, P > 0.05, n = 2). In addition, the monkeys' complex movements were mildly impaired. The lesioned monkeys were found to have difficulty picking up food from the wells. In the second stage, bilateral area 7m was lesioned. In the 5 postoperative sessions, the average percentage of correct responses in one monkey, with a relatively precise 7m lesion, decreased from 94.7% to 92.2% (no significance, P > 0.05), while the other monkey, with widely spread necrosis of lateral parietal cortex, showed an. obvious decline in performance, but still over the chance level. After 240 trials this monkey reattained the normal criterion. The results of this research suggest that the lesions of area 7 of the parietal cortex did not significantly affect the short-term visual spatial memory, which has been shown to be sensitive to lesions of the prefrontal cortex; they also support the notion of dissociation of spatial functions in the prefrontal and parietal cortices.
Resumo:
Posterior parietal cortex (PPC) constitutes a critical cortical node in the sensorimotor system in which goal-directed actions are computed. This information then must be transferred into commands suitable for hand movements to the primary motor cortex (M1). Complexity arises because reach-to-grasp actions not only require directing the hand towards the object (transport component), but also preshaping the hand according to the features of the object (grip component). Yet, the functional influence that specific PPC regions exert over ipsilateral M1 during the planning of different hand movements remains unclear in humans. Here we manipulated transport and grip components of goal-directed hand movements and exploited paired-pulse transcranial magnetic stimulation (ppTMS) to probe the functional interactions between M1 and two different PPC regions, namely superior parieto-occipital cortex (SPOC) and the anterior region of the intraparietal sulcus (aIPS), in the left hemisphere. We show that when the extension of the arm is required to contact a target object, SPOC selectively facilitates motor evoked potentials, suggesting that SPOC-M1 interactions are functionally specific to arm transport. In contrast, a different pathway, linking the aIPS and ipsilateral M1, shows enhanced functional connections during the sensorimotor planning of grip. These results support recent human neuroimaging findings arguing for specialized human parietal regions for the planning of arm transport and hand grip during goal-directed actions. Importantly, they provide new insight into the causal influences these different parietal regions exert over ipsilateral motor cortex for specific types of planned hand movements
Resumo:
Auditory spatial functions, including the ability to discriminate between the positions of nearby sound sources, are subserved by a large temporo-parieto-frontal network. With the aim of determining whether and when the parietal contribution is critical for auditory spatial discrimination, we applied single pulse transcranial magnetic stimulation on the right parietal cortex 20, 80, 90 and 150 ms post-stimulus onset while participants completed a two-alternative forced choice auditory spatial discrimination task in the left or right hemispace. Our results reveal that transient TMS disruption of right parietal activity impairs spatial discrimination when applied at 20 ms post-stimulus onset for sounds presented in the left (controlateral) hemispace and at 80 ms for sounds presented in the right hemispace. We interpret our finding in terms of a critical role for controlateral temporo-parietal cortices over initial stages of the building-up of auditory spatial representation and for a right hemispheric specialization in integrating the whole auditory space over subsequent, higher-order processing stages.
Resumo:
This study explored changes in scalp electrophysiology across two Working Memory (WM) tasks and two age groups. Continuous electroencephalography (EEG) was recorded from 18 healthy adults (18-34 years) and 12 healthy adolescents (14-17) during the performance of two Oculomotor Delayed Response (ODR) WM tasks; (i.e. eye movements were the metric of motor response). Delay-period, EEG data in the alpha frequency was sampled from anterior and parietal scalp sites to achieve a general measure of frontal and parietal activity, respectively. Frontal-parietal, alpha coherence was calculated for each participant for each ODR-WM task. Coherence significantly decreased in adults moving across the two ODR tasks, whereas, coherence significantly increased in adolescents moving across the two ODR tasks. The effects of task in the adolescent and adult groups were large and medium, respectively. Within the limits of this study, the results provide empirical support that WM development during adolescence include complex, qualitative, change.
Resumo:
Developmental functional imaging studies of cognitive control show progressive age-related increase in task-relevant fronto-striatal activation in male development from childhood to adulthood. Little is known, however, about how gender affects this functional development. In this study, we used event related functional magnetic resonance imaging to examine effects of sex, age, and their interaction on brain activation during attentional switching and interference inhibition, in 63 male and female adolescents and adults, aged 13 to 38. Linear age correlations were observed across all subjects in task-specific frontal, striatal and temporo-parietal activation. Gender analysis revealed increased activation in females relative to males in fronto-striatal areas during the Switch task, and laterality effects in the Simon task, with females showing increased left inferior prefrontal and temporal activation, and males showing increased right inferior prefrontal and parietal activation. Increased prefrontal activation clusters in females and increased parietal activation clusters in males furthermore overlapped with clusters that were age-correlated across the whole group, potentially reflecting more mature prefrontal brain activation patterns for females, and more mature parietal activation patterns for males. Gender by age interactions further supported this dissociation, revealing exclusive female-specific age correlations in inferior and medial prefrontal brain regions during both tasks, and exclusive male-specific age correlations in superior parietal (Switch task) and temporal regions (Simon task). These findings show increased recruitment of age-correlated prefrontal activation in females, and of age-correlated parietal activation in males, during tasks of cognitive control. Gender differences in frontal and parietal recruitment may thus be related to gender differences in the neurofunctional maturation of these brain regions.
Resumo:
Locomoting through the environment typically involves anticipating impending changes in heading trajectory in addition to maintaining the current direction of travel. We explored the neural systems involved in the “far road” and “near road” mechanisms proposed by Land and Horwood (1995) using simulated forward or backward travel where participants were required to gauge their current direction of travel (rather than directly control it). During forward egomotion, the distant road edges provided future path information, which participants used to improve their heading judgments. During backward egomotion, the road edges did not enhance performance because they no longer provided prospective information. This behavioral dissociation was reflected at the neural level, where only simulated forward travel increased activation in a region of the superior parietal lobe and the medial intraparietal sulcus. Providing only near road information during a forward heading judgment task resulted in activation in the motion complex. We propose a complementary role for the posterior parietal cortex and motion complex in detecting future path information and maintaining current lane positioning, respectively. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
Resumo:
Over the last 25years, "mindblindness" (deficits in representing mental states) has been one of the primary explanations behind the hallmark social-communication difficulties in autism spectrum conditions (ASC). However, highlighting neural systems responsible for mindblindness and their relation to variation in social impairments has remained elusive. In this study we show that one of the neural systems responsible for mindblindness in ASC and its relation to social impairments is the right temporo-parietal junction (RTPJ). Twenty-nine adult males with ASC and 33 age and IQ-matched Controls were scanned with fMRI while making reflective mentalizing or physical judgments about themselves or another person. Regions of interest within mentalizing circuitry were examined for between-group differences in activation during mentalizing about self and other and correlations with social symptom severity. RTPJ was the only mentalizing region that responded atypically in ASC. In Controls, RTPJ was selectively more responsive to mentalizing than physical judgments. This selectivity for mentalizing was not apparent in ASC and generalized across both self and other. Selectivity of RTPJ for mentalizing was also associated with the degree of reciprocal social impairment in ASC. These results lend support to the idea that RTPJ is one important neural system behind mindblindness in ASC. Understanding the contribution of RTPJ in conjunction with other neural systems responsible for other component processes involved in social cognition will be illuminating in fully explaining the hallmark social-communication difficulties of autism.
Resumo:
The behaviour of the non conserved and 98% glycerin conserved specimens for periods of 30, 60 and 90 days of bovine diaphragma's tendinous center, fibrous pericardium and parietal peritoneum submitted to mechanical tests of traction, was observed in ten bovines between 30 months and 36 months of age, crossbreeds, males and females, collecting fragments of these aforesaid membranes in each animal. The diaphragma's tendinous center and parietal peritoneum did not suffered significant modification (p>0.05) in the values of tension when compared to the resistance tests of traction of non conserved and 98% glycerin conserved membranes. However, all the evaluated tissues showed significant increase (p£0.05) of the elongation values when conserved in 98% glycerin for until 90 days. It was also observed that fibrous pericardium is the one which supports greaters tensions. So, it to was concluded, that glycerin is efficient to the conservation of biological membranes besides modifying its mechanical properties.