991 resultados para PARASITE TRYPANOSOMA-CRUZI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanosoma cruzi. The aim of this work was to analyze histologically and histometrically the sublingual gland of mice infected with the RAL strain of T cruzi, according to the sex. Swiss mice (Mus musculus) were inoculated with 2 x 10(4) blood trypomastigotes of the RAL strain of T cruzi. In the peak of the parasitemia (12th day) the mice were sacrificed, and the sublingual glands were fixed in ALFAC. HE-stained histological sections were evaluated histometrically. The parasitemia was higher in females. Histopatologically, acini of the infected animals were smaller, with scanty production of secretion, and smaller striated ducts. The nuclei of the demilunes were smaller and showed amastigote nests in the cytoplasm. Karyometrically, nuclei of the acini, demilunes and striated ducts were smaller in the infected mice. Stereologically, it was observed that relative volumes of acini and ducts were smaller and, inversely, relative volumen were greater for the conjunctive tissue in the infected males. The surface densities of acini and ducts were bigger and the diameter and thickness of the wall were smaller in this group. On the other hand, relative volume of acini was smaller and those of the ducts and conjunctive tissue were bigger in the infected females. The diameter and thickness of the wall of acini were smaller, and those of the striated ducts were bigger in this group. The RAL strain of T cruzi caused general atrophy in the sublingual gland, with numerous nests of parasites in the glandular parenchyma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the in vitro action of an hydrosoluble 2-nitroimidazole, Etanidazole (EZL), against Trypanosoma cruzi, the etiologic agent of Chagas disease. EZL displayed lethal activity against isolated trypomastigotes as well as amastigotes of T. cruzi (RA strain) growing in Vero cells or J774 macrophages, without affecting host cell viability. Although not completely equivalent to Benznidazole (BZL), the reference drug for Chagas chemotherapy, EZL takes advantage in exertingits anti-T. cruzi activity for longer periods without serious toxic side effects, as those recorded in BZL-treated patients. Our present results encourage further experiments to study in depth the trypanocidal properties of this drug already licensed for use in human cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Chagas disease is a neglected disease caused by the intracellular parasite Trypanosoma cruzi. Around 30% of the infected patients develop chronic cardiomyopathy or megasyndromes, which are high-cost morbid conditions. Immune response against myocardial self-antigens and exacerbated Th1 cytokine production has been associated with the pathogenesis of the disease. As IL-17 is involved in the pathogenesis of several autoimmune, inflammatory and infectious diseases, we investigated its role during the infection with T. cruzi. Methodology/Principal Findings: First, we detected significant amounts of CD4, CD8 and NK cells producing IL-17 after incubating live parasites with spleen cells from normal BALB/c mice. IL-17 is also produced in vivo by CD4(+), CD8(+) and NK cells from BALB/c mice on the early acute phase of infection. Treatment of infected mice with anti-mouse IL-17 mAb resulted in increased myocarditis, premature mortality, and decreased parasite load in the heart. IL-17 neutralization resulted in increased production of IL-12, IFN-gamma and TNF-alpha and enhanced specific type 1 chemokine and chemokine receptors expression. Moreover, the results showed that IL-17 regulates T-bet, ROR gamma t and STAT-3 expression in the heart, showing that IL-17 controls the differentiation of Th1 cells in infected mice. Conclusion/Significance: These results show that IL-17 controls the resistance to T. cruzi infection in mice regulating the Th1 cells differentiation, cytokine and chemokine production and control parasite-induced myocarditis, regulating the influx of inflammatory cells to the heart tissue. Correlations between the levels of IL-17, the extent of myocardial destruction, and the evolution of cardiac disease could identify a clinical marker of disease progression and may help in the design of alternative therapies for the control of chronic morbidity of chagasic patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flagellated protozoan parasite Trypanosoma cruzi is the aetiological agent of Chagas disease. Nucleoside diphosphate kinases (NDPKs) are enzymes that are involved in energy management and nucleoside balance in the cell. T. cruzi TcNDPK1, a canonical isoform, was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. Crystals grew after 72 h in 0.2 M MgCl(2), 20% PEG 3350. Data were collected to 3.5 angstrom resolution using synchrotron X-ray radiation at the National Synchrotron Light Laboratory (Campinas, Brazil). The crystals belonged to the trigonal space group P3, with unit-cell parameters a = b = 127.84, c = 275.49 angstrom. Structure determination is under way and will provide relevant information that may lead to the first step in rational drug design for the treatment of Chagas disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Transmitted by blood-sucking insects, the unicellular parasite Trypanosoma cruzi is the causative agent of Chagas' disease, a malady manifested in a variety of symptoms from heart disease to digestive and urinary tract dysfunctions. The reasons for such organ preference have been a matter of great interest in the field, particularly because the parasite can invade nearly every cell line and it can be found in most tissues following an infection. Among the molecular factors that contribute to virulence is a large multigene family of proteins known as gp85/trans-sialidase, which participates in cell attachment and invasion. But whether these proteins also contribute to tissue homing had not yet been investigated. Here, a combination of endothelial cell immortalization and phage display techniques has been used to investigate the role of gp85/trans-sialidase in binding to the vasculature. Methods: Bacteriophage expressing an important peptide motif (denominated FLY) common to all gp85/trans-sialidase proteins was used as a surrogate to investigate the interaction of this motif with the endothelium compartment. For that purpose phage particles were incubated with endothelial cells obtained from different organs or injected into mice intravenously and the number of phage particles bound to cells or tissues was determined. Binding of phages to intermediate filament proteins has also been studied. Findings and Conclusions: Our data indicate that FLY interacts with the endothelium in an organ-dependent manner with significantly higher avidity for the heart vasculature. Phage display results also show that FLY interaction with intermediate filament proteins is not limited to cytokeratin 18 (CK18), which may explain the wide variety of cells infected by the parasite. This is the first time that members of the intermediate filaments in general, constituted by a large group of ubiquitously expressed proteins, have been implicated in T. cruzi cell invasion and tissue homing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chagas disease, characterized by acute myocarditis and chronic cardiomyopathy, is caused by infection with the protozoan parasite Trypanosoma cruzi. We sought to identify genes altered during the development of parasite-induced cardiomyopathy. Microarrays containing 27,400 sequence-verified mouse cDNAs were used to analyze global gene expression changes in the myocardium of a murine model of chagasic cardiomyopathy. Changes in gene expression were determined as the acute stage of infection developed into the chronic stage. This analysis was performed on the hearts of male CD-1 mice infected with trypomastigotes of T. cruzi (Brazil strain). At each interval we compared infected and uninfected mice and confirmed the microarray data with dye reversal. We identified eight distinct categories of mRNAs that were differentially regulated during infection and identified dysregulation of several key genes. These data may provide insight into the pathogenesis of chagasic cardiomyopathy and provide new targets for intervention. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chagas disease (American trypanosomiasis) is caused by the protozoan parasite Trypanosoma cruzi. Chagas disease following solid-organ transplantation has occurred in Latin America. This report presents the occurrence of Chagas disease despite negative serological tests in both the donor and the recipient, as well as the effectiveness of treatment. A 21-year-old woman from the state of Sao Paulo (Brazil) underwent cadaveric donor liver transplantation in November 2005, due to cirrhosis of autoimmune etiology. Ten months after liver transplantation, she developed signs and symptoms of congestive heart failure (New York Heart Association functional class IV). The echocardiogram, which was normal preoperatively, showed dilated cardiac chambers, depressed left ventricular systolic function (ejection fraction = 35%) and moderate pulmonary hypertension. Clinical investigation discarded ischemic heart disease and autoimmune and other causes for heart failure. Immuno fluorescence (immunoglobulin M and immunoglobulin G) and hemagglutination tests for T cruzi were positive, and abundant T cruzi amastigotes were readily identified in myocardial biopsy specimens. Treatment with benznidazole for 2 months yielded an excellent clinical response. At the moment of submission, the patient remains in functional class I. This case highlighted that more appropriate screening for T cruzi infection is mandatory in potential donors and recipients of solid-organ transplants in regions where Chagas disease is prevalent. Moreover, it stressed that this diagnosis should always be considered in recipients who develop cardiac complications, since negative serological tests do not completely discard the possibility of disease transmission and since good results can be achieved with prompt trypanocidal therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An effective innate immune recognition of the intracellular protozoan parasite Trypanosoma cruzi is critical for host resistance against Chagas disease, a severe and chronic illness that affects millions of people in Latin America. In this study, we evaluated the participation of nucleotide-binding oligomerization domain (Nod)like receptor proteins in host response to T cruzi infection and found that Nod1-dependent, but not Nod2-dependent, responses are required for host resistance against infection. Bone marrow-derived macrophages from Nod1(-/-) mice showed an impaired induction of NF-kappa B-dependent products in response to infection and failed to restrict T cruzi infection in presence of IFN-gamma. Despite normal cytokine production in the sera, Nod1(-/-) mice were highly susceptible to T cruzi infection, in a similar manner to MyD88(-/-) and NO synthase 2(-/-) mice. These studies indicate that Nod1-dependent responses account for host resistance against T cruzi infection by mechanisms independent of cytokine production. The Journal of Immunology, 2010, 184: 1148-1152.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La enfermedad de Chagas, causada por Trypanosoma cruzi, constituye la principal miocarditis infecciosa a nivel mundial. Crecientes evidencias revelan que la respuesta inmune innata tendría un rol determinante en la fisiopatología de las enfermedades cardiovasculares. La inmunidad innata es la primera línea de defensa, no específica, preprogramada para combatir agentes infecciosos. Este sistema censa la presencia de antígenos extraños a través de los receptores tipo toll (TLR) produciendo citoquinas y activando mecanismos microbicidas. Sin embargo, los TLRs también se hayan distribuidos en las células parenquimales no inmunes, jugando un importante rol tanto en la defensa como en la homeostasis de cada tejido. Durante la etapa aguda de la infección, el T. cruzi invade y se replica dentro de una amplia variedad de células y tejidos. Pero posteriormente, los parásitos son efectivamente eliminados de la mayoría de los tejidos persistiendo durante toda la vida en las células del músculo cardíaco y esquelético de los pacientes infectados. Debido a que el mantenimiento de la célula cardíaca infectada es crítica para la patogénesis de la enfermedad, los mecanismos que participan en la sobrevida de los cardiomiocitos están siendo foco de nuestro estudio. Hemos demostrado, que la infección ejerce efectos antiapoptóticos sobre células cardíacas aisladas. Nuestra hipótesis es que la inmunidad innata cardíaca estaría involucrada en el mantenimiento de la sobrevida de los miocitos así como en la defensa contra el parásito. Objetivo general: determinar la participación de la respuesta inmune innata cardíaca en el desarrollo de la enfermedad de Chagas experimental murina. Objetivos específicos: 1) Analizar el compromiso de TLRs en la respuesta anti-apoptótica y de autofagia de cardiomiocitos aislados de ratones salvajes y de ratones deficientes en TLR4, TLR2 y en MyD88, molécula adaptadora de la señalización por TLRs, sometidos a la infección con el parásito. 2) Determinar la importancia de la actividad cisteín proteasa parasitaria en el grado de infectividad y la sobrevida de cultivos primarios de ratones salvajes infectados con parásitos transgénicos que poseen disminuída o nula actividad cisteín proteasa. 3) Establecer la cinética de expresión de TLR2/TLR6, TLR4 y TLR9, factores antiapoptóticos (Bcl-2, Bcl-xL, etc.), daño cardíaco y la carga parasitaria en el tejido cardíaco de ratones infectados salvajes y/o deficientes antes mencionados. Materiales y Métodos: Los animales serán infectados i.p. con 5x103 parásitos y se determinará la cinética de expresión de los mediadores mencionados por western blot e inmunofluorescencia, la carga parasitaria será determinada por qRT-PCR. Como controles se procesarán animales inyectados con solución salina. En cultivos primarios de cardiomiocitos de ratones neonatos salvajes y deficientes infectados se estudiará la carga parasitaria, la activación de los mecanismos microbicidas (producción de óxido nítrico, metabolitos reactivos del oxígeno y del nitrógeno, ciclooxigenasa, etc.), producción de citoquinas y expresión de moléculas anti-apoptóticas (Bcl-2, Bcl-xL, Bax, etc.). Se explorará la tasa de apoptosis en cultivos deprivados de suero. La autofagia se analizará por microscopia electrónica. Cultivos controles serán mantenidos en medio o tratados con ligandos de los diferentes TLRs. Resultados preliminares sugieren que tanto TLR2 como Bcl-2 se incrementan en tejido cardíaco infectado. Esto nos lleva a profundizar en los mecanismos observados en cultivos y estudiarlos en un modelo in vivo, analizando la posible importancia que tiene la inmunidad innata cardíaca en el control del establecimiento de la infección. La comprensión de los mecanismos que mantienen la sobrevida de los cardiomiocitos y su respuesta a la infección es importante ya que el conocimiento de las bases moleculares es fundamental para el desarrollo de nuevos agentes quimioterapéuticos. Chagas disease is endemic in Central and South America and causes the most common myocarditis worldwide. We have previously reported that the cardiotrophic parasite Trypanosoma cruzi, its etiological agent, protects cardiomyocytes against apoptosis induced by growth factor deprivation activating the PI3K/Akt and MEK1/ERK signaling pathways. Recent studies have shown that local innate immunity plays a key role in initiating and coordinating homeostatic as well as defense responses in the heart. One of the mechanisms by which the innate immune system senses the presence of foreign antigens is through TLRs. The stimulation of these receptors leads to the activation and nuclear translocation of NF-kB transcription factor and the production of cytokines. Proinflammatory cytokines, in turn, appear to play a central role in the orchestration and timing of the intrinsic cardiac stress response providing, under different situations, instantaneous anti-apoptotic cytoprotective signals, which allow tissue repair and/or remodeling. The aim of the present project is to study the cardiomyocyte innate immune responses to T. cruzi infection and its role in target cell protection from apoptosis. Specific objectives: 1) Study the mechanism triggered by TLR in the anti-apoptotic response and parasite load of infected cardiomyocyte primary cultures from wild type and mice deficient in TLR2, TLR4 or MyD88. 2) Determine the effect of parasite cisteín protease activity on primary cultures from wild type mice. 3) Determine the TLR signaling-involvement in parasite load and survival indicators in deficient mice. Preliminary results showed us that cardiac-TLR2 may be involved in the anti-apoptotic effect elicited by the parasite and prompted us to establish the mechanisms triggered by the innate immunity that mediate parasite persistence within the host cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A five-year domiciliary collection in the 22 departments of Guatemala showed that out of 4,128 triatomines collected, 1,675 were Triatoma dimidiata (Latreille, 1811), 2,344 were Rhodnius prolixus Stal 1859, and only 109 were T. nitida Usinger 1939. The Chagas disease parasite, Trypanosoma cruzi, was found in all three species. Their natural infection rates were similar in the first two species (20.6%; 19.1%) and slightly lower in T. nitida(13.8%). However there was no significant difference in the infection rates in the three species (p = 0.131). T. dimidiata males have higher infection rates than females (p = 0.030), whereas for R. prolixus there is no difference in infection rates between males and females (p = 0.114). The sex ratios for all three species were significantly skewed. More males than females were found inside houses for T. dimidiata (p < 0.0001) and T. nitida (p = 0.011); a different pattern was seen for R. prolixus (p = 0.037) where more females were found. Sex ratio is proposed as an index to show the mobility of T. dimidiata in different populations. T. dimidiata is widely distributed in the country, and is also the main vector in at least ten departments, but R. prolixus with higher vectorial capacity is an important vector in at least two departments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vitro activity of four 2-nitropropene derivatives, 1-(3-benzothienyl)-2-nitropropene (N1), 1-(3-thienyl)-2-nitropropene (N2), 1-(5-bromo-2-thienyl)-2-nitropropene (N3) and 1-(4-bromo-2-thienyl)-2-nitropropene (N4), were tested against cultures of the parasite Trypanosoma cruzi. Cytotoxicity studies were performed using Vero cells. The blood trypomastigotes, amastigotes and epimastigotes showed differential degrees of sensitivity towards the four tested compounds; the highest activity against the epimastigotes and blood tripomastigotes was exhibited by N1, followed by N3, N4 and finally N2. In contrast, whereas the compounds N1, N3 and N4 exerted similar magnitudes of activity against amastigotes, N2 was found to be a much less potent compound. According to our results, the compound N1 had the highest level of activity (IC50: 0.6 μM) against epimastigotes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current drug options for the treatment of chronic Chagas disease have not been sufficient and high hopes have been placed on the use of genomic data from the human parasite Trypanosoma cruzi to identify new drug targets and develop appropriate treatments for both acute and chronic Chagas disease. However, the lack of a complete assembly of the genomic sequence and the presence of many predicted proteins with unknown or unsure functions has hampered our complete view of the parasite's metabolic pathways. Moreover, pinpointing new drug targets has proven to be more complex than anticipated and has revealed large holes in our understanding of metabolic pathways and their integrated regulation, not only for this parasite, but for many other similar pathogens. Using an in silicocomparative study on pathway annotation and searching for analogous and specific enzymes, we have been able to predict a considerable number of additional enzymatic functions in T. cruzi. Here we focus on the energetic pathways, such as glycolysis, the pentose phosphate shunt, the Krebs cycle and lipid metabolism. We point out many enzymes that are analogous to those of the human host, which could be potential new therapeutic targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vaccines have had an unquestionable impact on public health during the last century. The most likely reason for the success of vaccines is the robust protective properties of specific antibodies. However, antibodies exert a strong selective pressure and many microorganisms, such as the obligatory intracellular parasite Trypanosoma cruzi, have been selected to survive in their presence. Although the host develops a strong immune response to T. cruzi, they do not clear the infection and instead progress to the chronic phase of the disease. Parasite persistence during the chronic phase of infection is now considered the main factor contributing to the chronic symptoms of the disease. Based on this finding, containment of parasite growth and survival may be one method to avoid the immunopathology of the chronic phase. In this context, vaccinologists have looked over the past 20 years for other immune effector mechanisms that could eliminate these antibody-resistant pathogens. We and others have tested the hypothesis that non-antibody-mediated cellular immune responses (CD4+ Th1 and CD8+ Tc1 cells) to specific parasite antigens/genes expressed by T. cruzi could indeed be used for the purpose of vaccination. This hypothesis was confirmed in different mouse models, indicating a possible path for vaccine development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac damage is a frequent manifestation of Chagas disease, which is caused by the parasite Trypanosoma cruzi. Selenium (Se) is an essential micronutrient, the deficiency of which has been implicated in the development of cardiomyopathy. Our group has previously demonstrated that Se supplementation prevents myocardial damage during acute T. cruzi infection in mice. In this study, we analyzed the effect of Se treatment in cases of T. cruzi infection using prevention and reversion schemes. In the Se prevention scheme, mice were given Se supplements (2 ppm) starting two weeks prior to inoculation with T. cruzi(Brazil strain) and continuing until 120 days post-infection (dpi). In the Se reversion scheme, mice were treated with Se (4 ppm) for 100 days, starting at 160 dpi. Dilatation of the right ventricle was observed in the infected control group at both phases of T. cruzi infection, but it was not observed in the infected group that received Se treatment. Surviving infected mice that were submitted to the Se reversion scheme presented normal P wave values and reduced inflammation of the pericardium. These data indicate that Se treatment prevents right ventricular chamber increase and thus can be proposed as an adjuvant therapy for cardiac alterations already established by T. cruziinfection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chagas disease (CD) causes the highest burden of parasitic diseases in the Western Hemisphere and is therefore a priority for drug research and development. Platelet-activating factor (PAF) causes the CD parasite Trypanosoma cruzi to differentiate, which suggests that the parasite may express PAF receptors. Here, we explored the T. cruzi proteome for PAF receptor-like proteins. From a total of 23,000 protein sequences, we identified 29 hypothetical proteins that are predicted to have seven transmembrane domains (TMDs), which is the main characteristic of the G protein-coupled receptors (GPCRs), including the PAF receptor. The TMDs of these sequences were independently aligned with domains from 25 animal PAF receptors and the sequences were analysed for conserved residues. The conservation score mean values for the TMDs of the hypothetical proteins ranged from 31.7-44.1%, which suggests that if the putative T. cruzi PAF receptor is among the sequences identified, the TMDs are not highly conserved. These results suggest that T. cruzi contains several GPCR-like proteins and that one of these GPCRs may be a PAF receptor. Future studies may further validate the PAF receptor as a target for CD chemotherapy.