115 resultados para PARALICHTHYS-OLIVACEUS
Resumo:
Microsatellite markers are important for gene mapping and for marker-assisted selection. Sixty-five polymorphic microsatellite markers were developed with an enriched partial genomic library from olive flounder Paralichthys olivaceus an important commercial fish species in Korea. The variability of these markers was tested in 30 individuals collected from the East Sea (Korea). The number of alleles for each locus ranged from 2 to 33 (mean, 17.1). Observed and expected heterozygosity as well as polymorphism information content varied from 0.313 to 1.000 (mean, 0.788), from 0.323 to 0.977 (mean, 0.820), and from 0.277 to 0.960 (mean, 0.787), respectively. Nine loci showed significant deviation from the Hardy-Weinberg equilibrium after sequential Bonferroni correction. Analysis with MICROCHECKER suggested the presence of null alleles at five of these loci with estimated null allele frequencies of 0.126-0.285. These new microsatellite markers from genomic libraries will be useful for constructing a P. olivaceus linkage map.
Resumo:
The duration of spawning markers (e.g. signs of previous or imminent spawnings) is essential information for estimating spawning frequency of fish. In this study, the effect of temperature on the duration of spawning markers (i.e., oocytes at early migratory nucleus, late migratory nucleus, and hydrated stages, as well as new postovulatory follicles) of an indeterminate multiple-batch spawner, Japanese f lounder (Paralichthys olivaceus), was evaluated. Cannulation was performed to remove samples of oocytes, eggs, and postovulatory follicles in individual females at 2–4 hour intervals over 27–48 hours. The duration of spawning markers was successfully evaluated in 14 trials ranging between 9.2° and 22.6°C for six females (total length 484–730 mm). The durations of spawning markers decreased exponentially with temperature and were seen to decrease by a factor of 0.16, 0.36, 0.30, and 0.31 as temperature increased by 10°C for oocytes at early migratory nucleus, late migratory nucleus, and hydrated stages, and new postovulatory follicles, respectively. Thus, temperature should be considered when estimating spawning frequency from these spawning markers, especially for those fish that do not spawn synchronously in the population.
Resumo:
A laboratory trial was conducted in a sea water recirculatory system to study the nutrient digestibility coefficients of diets with varying energy to protein ratios in Japanese flounder Paralicthys olivaceus. Six different experimental diets with two protein levels (45 and 55%) having six different energy to protein ratio of 87, 90, 94, 107, 110 and 114 were formulated using white fish meal and casein as protein sources. The results of the study showed that the apparent protein digestibility (APD) value ranged between 90.59 to 91.61% and there were no significant differences (P>0.05) between the APD values of diets 1, 2, 3, 4 and 6. The apparent lipid digestibility (ALD) values of diets ranged between 88.24 to 90.18%. The apparent energy digestibility (AED) values ranged between 80.55 to 87.52% with diet 3 producing significantly the highest AED value. In general, except in diet 1 the ALD and AED values increased with the increase of dietary lipid at both protein levels. The results of the present investigation indicated that Japanese flounder can efficiently digest the dietary nutrients at varying energy to protein ratios.
Resumo:
The double-stranded RNA (dsRNA)-dependent protein kinase (PKR) belongs to the eIF2 alpha kinase family and plays a critical role in interferon (IFN)-mediated antiviral response. Recently, in Japanese flounder (Paralichthys olivaceus), a PKR gene has been identified. In this study, we showed that PoPKR localized to the cytoplasm, and the dsRNA-binding motifs (dsRBMs) played a determinative role in protein localization. In cultured FEC cells, PoPKR was detected at a low level of constitutive expression but was highly induced after treatment with UV-inactivated grass carp hemorrhagic virus, active SMRV and Poly I:C although with different expression kinetics. In flounder, PoPKR was ubiquitously distributed in all tested tissues, and SMRV infection resulted in significant upregulation at mRNA and protein levels. In order to reveal the role of PoPKR in host antiviral response, its expression upon exposure to various inducers was characterized and further compared with that of PoHRI, which is another eIF2 alpha kinase of flounder. Interestingly, expression comparison revealed that all inducers stimulated upregulation of PoHRI in cultured flounder embryonic cells and fish, with a similar kinetics to PoPKR but to a less extent. These results suggest that, during antiviral immune response, both flounder eIF2 alpha kinases might play similar roles and that PoPKR is the predominant kinase. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Cathepsin B is a lysosomal cysteine protease of the papain-like enzyme family with multiple biological functions. In this study, Paralichthys olivaceus cathepsin B (PoCatB) cDNA was isolated from flounder embryonic cells (FEC) treated with UV-inactivated grass carp hemorrhage virus (GCHV) and subsequently identified as a vitally induced gene. The full length cDNA of PoCatB is 1801 bp encoding 330-amino acids. The deduced protein has high homology to all known cathepsin B proteins, containing an N-terminal signal peptide, cysteine protease active sites, the occluding loop segment and a glycosylation site, all of which are conserved in the cathepsin B family. PoCatB transcription of FEC cells could be induced by turbot (Scophthalmus maximus) rhabdovirus (SMRV), UV-inactivated SMRV, UV-inactivated GCHV, poly I:C or lipopolysaccharide (LPS), and SMRV or poly I:C was revealed to be most effective among the five inducers. In normal flounder, PoCatB mRNA was detectable in all examined tissues. Moreover, SMRV infection could result in significant upregulation of PoCatB mRNA, predominantly in spleen, head kidney, posterior kidney, intestine, gill and muscle with 18.2,10.9, 24.7,12, 31.5 and 18 fold increases at 72 h post-infection respectively. These results provided the first evidence for the transcriptional induction of cathepsin B in fish by virus and LPS, indicating existence of a novel function in viral defense. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2 alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2 alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2 alpha. The interaction between PoPKR and eIF2 alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2 alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.
Resumo:
A birnavirus strain, Paralichthys olivaceus birnavirus (POBV), was isolated and characterized from cultured flounder in China, and its complete genomic sequence was subsequently determined. The virus could induce cytopathic effects (CPE) in four of seven fish cell lines and was resistant to chloroform, 5-iodo-2'-deoxyuridine, acid and alkaline pH, and heat treatment. Purified virus particles had a typical icosahedral shape, with a diameter of approximately 55-60 nm. The genomic segments A and B of POBV were 3,091 and 2,780 bp in length and shared many of the features of the members of the family Birnaviridae. Segment A contained two partially overlapping ORFs encoding a polyprotein, pVP2-VP4-VP3, and a nonstructural protein, VP5, while segment B had only one ORF encoding for the VP1, a viral RNA-dependent RNA polymerase (RdRp). This is the first report about a birnavirus strain from a new non-salmonid host in China and its complete genome sequence.
Resumo:
Two MAbs (3C7 and 3C9) against flounder Paralichthys olivaceus rhabdovirus (PORV) were generated with hybridoma cell fusion technology and characterized by an indirect enzyme-linked immunosorbent assay, isotype test, Western blot and immunodot analysis and immunofluorescence assay. Isotyping tests demonstrated that both of the two MAbs belonged to IgM subclass. Western blot analysis showed the MAbs reacted with 42, 30, and 22 kDa viral proteins, which were localized within the cytoplasm of PORV-infected grass carp ovary (GCO) cells analyzed by indirect immunofluorescences tests. The MAb 3C7 was also selected at random for detecting virus antigens in the inoculated grass carp tissues by immunohistochemistry assay. Flow cytometry tests showed that at the 36 h postinfection (0.25 PFU/cell), the 23% PORV-infected GCO cells could be distinguished from the uninfected cells with the MAb 3C7. Such MAbs could be useful for diagnosis and potential treatment of viral infection. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Voltage-dependent anion channel (VDAC, also known as mitochondrial porin) is acknowledged to play an important role in stress-induced mammalian apoptosis. In this study, Paralichthys olivaceus VDAC (PoVDAC) gene was identified as a virally induced gene from Scophthalmus Maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). The full length of PoVDAC cDNA is 1380 bp with an open reading frame of 852 bp encoding a 283 amino acid protein. The deduced PoVDAC contains one alpha-helix, 13 transmembrane beta-strands and one eukaryotic mitochondrial porin signature motif. Constitutive expression of PoVDAC was confirmed in all tested tissues by real-time PCR. Further expression analysis revealed PoVDAC mRNA was upregulated by viral infection. We prepared fish antiserum against recombinant VDAC proteins and detected the PoVDAC in heart lysates from flounder as a 32 kDa band on western blot. Overexpression of PoVDAC in fish cells induced apoptosis. Immunofluoresence localization indicated that the significant distribution changes of PoVDAC have occurred in virus-induced apoptotic cells. This is the first report on the inductive expression of VDAC by viral infection, suggesting that PoVDAC might be mediated flounder antiviral immune response through induction of apoptosis. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The heme-regulated initiation factor 2 alpha kinase (HRI) is acknowledged to play an important role in translational shutoff in reticulocytes in response to various cellular stresses. In this study, we report its homologous cDNA cloning and characterization from cultured flounder embryonic cells (FEC) after treatment with UV-inactivated grass carp haemorrhagic virus (GCHV). The full-length cDNA of Paralichthys olivaceus HRI homologue (PoHRI) has 2391 bp and encodes a protein of 651 amino acids. The putative PoHRI protein exhibits high identity with all members of eIF2 alpha kinase family. It contains 12 catalytic subdomains located within the C-terminus of all Ser/Thr protein kinases, a unique kinase insertion of 136 amino acids between subdomains IV and V, and a relatively conserved N-terminal domain (NTD). Upon heat shock, virus infection or Poly PC treatment, PoHRI mRNA and protein are significantly upregulated in FEC cells but show different expression patterns in response to different stresses. In healthy flounders, PoHRI displays a wide tissue distribution at both the mRNA and protein levels. These results indicate that PoHRI is a ubiquitous eIF2a kinase and might play an important role in translational control over nonheme producing FEC cells under different stresses. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Heat shock proteins (Hsps) are a family of highly conserved cellular proteins present in all organisms, mediating a range of essential housekeeping and cytoprotective functions as well-known molecular chaperons and recently as regulators of the immune response. By subtractive suppression hybridization, three Hsp40 homologues have been identified in the flounder (Paralichthys olivaceus) embryonic cells (FEC) after treatment with UV-inactivated turbot (Scophthalmus maximus L.) rhabdovirus (SMRV), termed PoHsp40A4, PoHsp40B6 and PoHsp40B11, whose encoded proteins all possess the conserved DnaJ domain, a signature motif of the Hsp40 family. Based on different protein structure and phylogenetic analysis, they can be categorized into two subfamilies, PoHsp40A4 for Type I Hsp40, PoHsp40B6 and PoHsp40B11 for Type 11 Hsp40. Further expression analysis revealed two very different types of kinetics in response either to heat shock or to virus infection, with a marked induction for PoHsp4OA4 and a weak one for both PoHsp40B6 and PoHsp40B11. A very distinct tissue distribution of mRNA was also revealed among the three genes, even between PoHsp40B6 and PoHsp40B11. This is the first report on the transcriptional induction of Hsp40 in virally stimulated fish cells, and the differential expressions might reflect their different roles in unstressed and stressed cells. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Three Rana grylio virus (RGV) isolates and lymphocystis disease virus (LCDV-C) were molecularly characterized by antigenicity comparison, Western blot detection of viral polypeptides, restriction fragment length polymorphism analysis of viral genomes, and MCP sequence analysis. Significant antigenicity differences existed among the three RGV isolates and LCDV-C. Western blot detection indicated that the viral polypeptides of three RGV isolates could be recognized by the anti-RGV9807 serum, whereas no bands were observed in the LCDV-C, and significant differences exist among the band patterns of three RGV isolates. Restriction fragment length polymorphism (RFLP) analysis was performed by digesting genomic DNA of the four iridovirus isolates with restriction endonucleases HindIII, KpnI, XbaI and BamHI. On the whole, obvious discrepancies existed between LCDV-C and RGV isolates, and some significant band pattern differences were also revealed between RGV9808 and RGV9506 (or RGV9807) in the profiles of restriction endonucleases Xbal, Kpn I and BamHI. PCR amplification and sequence analysis of MCP gene sequence further revealed their phylogenetic relationship among the three RGV isolates, LCDV-C and other iridoviruses. RGV9506, RGV9807 and RGV9808 are clustered together with other ranaviruses, such as FV3, BIV, TFV and ENHV, although the RGV9808 is more close to EHNV than to other ranaviruses. Additionally, LCDV-C is clustered with LCDV-1, the type species of genus Lymphocystisvirus. The current study provides clear evidence that significant genetic difference exists among the three RGV isolates. Therefore, further work on comparative genomic studies will contribute significantly to understanding of their taxonomic position and pathological mechanism. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Natural resistance associated macrophage protein (Nramp) controls partially innate resistance to intracellular parasites. Its function is to enhance the ability of macrophages to kill pathogens. However, little is known about the structure and function of Nramp in lower vertebrates such as teleosts. We have recently isolated a cDNA encoding Nramp from Japanese flounder (Paratichthys olivaceus). The full-length cDNA of the Nramp is 3066 bp in length, including 224 bp 5' terminal UTR, 1662 bp encoding region and 1180 bp 3' terminal UTR. The 1662-nt open reading frame was found to code for a protein with 554 amino acid residues. Comparison of amino acid sequence indicated that Japanese flounder Nramp consists of 12 transmembrane (TM) domains. A consensus transport motif (CTM) containing 20 residues was observed between transmembrane domains 8 and 9. The deduced amino acid sequence of Japanese flounder had 77.30%, 82.71%, 82.67%, 79.64%, 80.72%, 90.97%, 91.16%, 60.14%, 71.48%, 61.69%, 72.37% identity with that of rainbow trout Nramp alpha and beta, channel catfish Nramp, fathead minnow Nramp, common carp Nramp, striped sea bass Nramp, red sea bream Nramp, mouse Nramp 1 and 2, human Nramp 1 and 2, respectively. RT-PCR indicated that Nramp transcripts were highly abundant in spleen, head kidney, abundant in intestine, liver and gill, and less abundant in heart. The level of Nramp mRNA in embryos gradually increases during embryogenesis from 4 h (8 cell stage) to 80 h (hatched stage) after fertilization. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Pigment epithelium-derived factor (PEDF) is acknowledged to be a non-inhibitory member of the serine protease inhibitor (serpin) superfamily, with antiangiogenesis, and neuroprotective and immumoregulatory function, mainly in the tissues of nervous system. Here, A PEDF gene homolog, Paralichthys olivaceus PEDF (PoPEDF), was isolated from flounder embryonic cells (FEC) treated with UV-inactivated Grass carp hemorrhage virus (GCHV) and subsequently identified as a differentially expressed gene. The full length of PoPEDF cDNA is 1803 bp with an open reading frame of 1212 bp encoding a 403-amino-acid protein. This deduced protein contains an N-terminal signal peptide, a glycosylation site, a consensus serpin motif, and a 34-mer and a 44-mer fragment, all of which are very conserved in the PEDF family. PoPEDF gene exhibits a conserved exon-intron arrangement with 8 exons and 7 introns. This conserved evolutionary relationship was further confirmed by a phylogenetic analysis, where fish PEDFs and mammalian members formed a well-supported clade. Constitutive expression of PoPEDF was widely detected in many tissues. In response to UV-inactivated GCHV or poly(I:C), PEDF mRNA was upregulated in FEC cells with time. This is the first report on the transcriptional induction of PEDF in virally infected cells. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
The causative agent of lymphocystis disease that frequently occurs in cultured flounder Paralichthys olivaceus in China is lymphocystis virus (LV). In this study, 13 fish cell lines were tested for their susceptibility to LV. Of these, 2 cell lines derived from the freshwater grass carp Ctenopharyngodon idellus proved susceptible to the LV, and 1 cell line, GCO (grass carp ovary), was therefore used to replicate and propagate the virus. An obvious cytopathic effect (CPE) was first observed in cell monolayers at 1 d post-inoculation, and at 3 d this had extended to about 75% of the cell monolayer. However, no further CPE extension was observed after 4 d. Cytopathic characteristics induced by the LV were detected by Giemsa staining and fluorescence microscopic observation with Hoechst 33258 staining. The propagated virus particles were also observed by electron microscopy. Ultrastructure analysis revealed several distinct cellular changes, such as chromatin compaction and margination, vesicle formation, cell-surface convolution, nuclear fragmentation and the occurrence of characteristic 'blebs' and cell fusion. This study provides a detailed report of LV infection and propagation in a freshwater fish cell line, and presents direct electron microscopy evidence for propagation of the virus in infected cells. A possible process by which the CPEs are controlled is suggested.