923 resultados para PAPER WASPS
Resumo:
Le passage de la vie solitaire à la vie sociale représente une des principales transitions évolutives. La socialité a évolué au sein de plusieurs taxons du règne animal et notamment chez les insectes sociaux qui ont atteint son niveau le plus élevé : l'eusocialité. Les colonies d'insectes sociaux se composent d'une reine, qui monopolise la reproduction, et d'ouvrières, non-reproductrices ou parfois stériles, qui aident à élever la descendance de la reine. Selon la théorie de la sélection de parentèle, les ouvrières augmentent leur fitness (succès reproducteur) non pas à travers leur propre progéniture, mais en aidant des individus apparentés (leur reine) à produire davantage de descendants. Cette théorie prédit ainsi que les ouvrières ont un intérêt à rester fidèles à leur nid natal. Toutefois, chez la guêpe tropicale Polistes canadensis, de nombreuse ouvrières visitent d'autres nids que leur nid natal : un phénomène appelé « dérive des ouvrières ». Le but de ce doctorat est ainsi de mieux comprendre les mécanismes impliqués dans ce comportement particulier des ouvrières ainsi que ces implications pour la théorie de la sélection de parentèle. Nous avons examiné le comportement de dérive des ouvrières à travers une étude des dynamiques sociales chez la guêpe tropicale P. canadensis. Mes résultats montrent que les populations de P. canadensis se composent en différentes agrégations de nids. Malgré de précédentes suggestions, on n'observe qu'une faible viscosité génétique au sein des populations de P. canadensis étudiées. On retrouve toutefois un degré d'apparentement entre nids d'une même agrégation. Ceci suggère que les ouvrières dériveuses sont susceptibles de bénéficier de fitness indirect en aidant les nids proches géographiquement. De plus, ces échanges d'ouvrières ne semblent pas accidentels puisque l'on constate des variations de taux de dérive et puisque les déplacements observés entre nids persistent sur plusieurs périodes de temps. La charge de travail, qui correspond aux différences d'effort de fourragement entre nid visités et natals, est décrite dans notre étude comme potentiel facteur expliquant le comportement de dérive des ouvrières chez P. canadensis. Nos expériences de retrait d'ouvrières et de couvain ont révélées que les dériveuses ne semblent pas répondre aux changements de besoins en aide des nids visités. Les ouvrières dériveuses biaisent leur effort en aidant leur propre nid, par lequel elles bénéficient le plus en termes de fitness indirect, avant de se consacrer à tout autre nid. Dans l'ensemble, ces résultats sur la dérive des ouvrières chez P. canadensis sont cohérents et suggèrent que ce comportement est une importante stratégie de reproduction alternative chez cette espèce qui contribue à la fitness indirecte de ces ouvrières non-reproductrices. De plus, ce doctorat apporte des informations sur la structure génétique des populations de guêpes Polistes et décrit le rôle des ouvrières inactives. Celles-ci semblent servir de réserve en ouvrières apportant du support à la colonie dans l'éventualité d'une perte d'individus. Plus généralement, ce travail met l'accent sur l'organisation complexe et l'adaptabilité des individus dans les sociétés d'insectes. - One major transition in evolution is the shift from solitary to social life. Sociality has evolved in a few taxa of the animal kingdom, most notably in the social insects which have achieved the highest level of sociality: eusociality. Colonies of social insects are formed by a reproductive queen, and many non-reproductive or sterile workers who help raise their mother queen's offspring. Kin selection theory explains worker behaviour in terms of the indirect fitness they gain from raising non-offspring kin. It therefore predicts that workers should stay faithful to their natal nests, to which they are the more related. However, in the tropical paper wasps Polistes canadensis, high levels of nest-drifting, whereby workers spend time on other neighbouring nests, has been reported. This PhD aimed at understanding the mechanisms involved in this peculiar behaviour as well as its implications for kin selection theory. I examined nest-drifting through the study of the social dynamics of the tropical paper wasp P. canadensis. My results showed that populations of this species of paper wasps are composed of different aggregations of nests. The studied populations showed little limited dispersal (viscosity), despite previous suggestion, but nests within these aggregations were more related to each other than nests outside of aggregations. This suggested that drifters may benefit from indirect fitness when helping on neighbouring nests. Drifting was unlikely to be accidental since we found drifting patterns at various rates and consistently over several time periods during monitoring. Workload (differences in colony-level foraging effort) was also a potential factor explaining nest-drifting in P. canadensis. Worker and brood removal experiments revealed that drifters do not respond to any changes in the need for help in the non-natal nests they visit. Drifters thus bias their help in their natal nests, from which they may benefit the most in terms of indirect fitness, before investing in others. Altogether, these results on nest-drifting in P. canadensis are consistent and suggest that nest-drifting is an important alternative reproductive strategy, contributing to the indirect fitness benefits gained by non-reproductive wasps. Additionally, this PhD provides information on the genetic structure of paper wasps' populations and demonstrates the role of inactive or lazy wasps as a "reserve worker force", which provides resilience to the colony in the event of worker mortality. More generally, this work further highlights the complex organization and adaptability of individuals in insect societies.
Resumo:
Climate has long been suggested to affect population genetic structures of eusocial insect societies. For instance, Hamilton [Journal of Theoretical Biology7 (1964) 17] discusses whether temperate and tropical eusocial insects may show differences in population-level genetic structure and viscosity, and how this might relate to differences in the degree of synchrony in their life cycles or modes of nest founding. Despite the importance of Hamilton's 1964 papers, this specific idea has not been tested in actual populations of wasps, probably due to the paucity of studies on tropical species. Here, we compare colony and population genetic structures in two species of primitively eusocial paper wasps with contrasting ecologies: the tropical species Polistes canadensis and the temperate species P. dominulus. Our results provide important clarifications of Hamilton's discussion. Specifically, we show that the genetic structures of the temperate and tropical species were very similar, indicating that seasonality does not greatly affect population viscosity or inbreeding. For both species, the high genetic differentiation between nests suggests strong selection at the nest level to live with relatives, whereas low population viscosity and low genetic differentiation between nest aggregations might reflect balancing selection to disperse, avoiding competition with relatives. Overall, our study suggests no prevalence of seasonal constraints of the life cycle in affecting the population genetic structure of eusocial paper wasps. These conclusions are likely to apply also to other primitively eusocial insects, such as halictine bees. They also highlight how selection for a kin structure that promotes altruism can override potential effects of ecology in eusocial insects.
Resumo:
Hosts of Trigonalidae include larvae of social paper wasps, which have been considered secondary hosts, supposedly following predation of the primary host (usually caterpillars) by adult wasps. This study provides observations on biological aspects of the parasitism of Apoica flavissima Van der Vecht by Seminota marginata (Westwood), and suggests that social wasps may be both primary and secondary hosts, whereas they extract and chew vegetable fiber.
Resumo:
A determination key to the Central European paper wasps (Polistinae – Polistes Latreille, 1802 – eight species) and social wasps (Vespinae – 11 species: Vespa Linnaeus, 1758 – one species, Vespula Thomson, 1869 – four species, Dolichovespula Rohwer, 1916 – six species) is given. Distribution and biotope requirements of all species in the Czech Republic and Slovakia are briefly mentioned. All social wasps occur more or less regularly in both countries. Four paper wasps are relatively common but four other species (Polistes atrimandibularis Zimmermann, 1930, P. sulcifer Zimmermann, 1930, P. associus Kohl, 1898, and P. gallicus (Linnaeus, 1767)) are very rare with the Czech Republic and/or Slovakia at the northern edge of their range.
Resumo:
Social wasps from temperate zones have clear annual colony cycles, and the young queens hibernate during winter. In the subtropics, the only previously reported evidence for the existence of hibernation is the facultative winter aggregations of females during harsh climate conditions. As in temperate-zone species analyzed so far, we show in this study that in the paper wasp, Polistes versicolor, a subtropical species, body size increases as an unfavorable season approaches. Our morphological studies indicate that larger females come from winter aggregations-that is, they are new queens. Multivariate analyses indicate that size is the only variable analyzed that shows a relationship to the differences. Given the absence of a harsh climate, we suggest that the occurrence of winter aggregations in tropical P. versicolor functions to allow some females to wait for better environmental conditions to start a new nest, rather than all being obliged to start a new nest as soon as they emerge.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Previous study revealed that the swarm-founding wasp Polybia paulista is accurately able to distinguish nestmates from non-nestmates in the summer. However, the risk of accepting alien intruders is considered to be low in winter colonies, and additionally brood production is limited in 30-40% of colonies during the winter in this species. Thus, it is expected that colonies might lower their acceptance threshold and accept some conspecific wasps from alien colonies in winter. We conducted field experiments to examine tolerance of conspecific (nestmate and non-nestmate) females in winter. In contrast to our prediction, our colonies did not accept any individuals from alien colonies. We suggest that P. paulista exhibits the colony-specific acceptance threshold in winter, and colonies that produced brood in their nests may have raised the acceptance threshold even if the risk of accepting alien intruders is low in winter.
Resumo:
The dress code of paper wasps, like that of humans, is related to their social habits: species with a flexible nest-founding strategy have highly variable black-and-yellow markings. This color polymorphism facilitates individual recognition and might have been selected to permit complex social interactions.
Resumo:
DNA methylation plays an important role in the epigenetic control of developmental and behavioral plasticity, with connections to the generation of striking phenotypic differences between castes (larger, reproductive queens and smaller, non-reproductive workers) in honeybees and ants. Here, we provide the first comparative investigation of caste- and life stage-associated DNA methylation in several species of bees and vespid wasps displaying different levels of social organization. Our results reveal moderate levels of DNA methylation in most bees and wasps, with no clear relationship to the level of sociality. Strikingly, primitively social Polistes dominula paper wasps show unusually high overall DNA methylation and caste-related differences in site-specific methylation. These results suggest DNA methylation may play a role in the regulation of behavioral and physiological differences in primitively social species with more flexible caste differences. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Mutualisms, such as the fig-agaonid wasp association, are susceptible to colonization by parasitic species, which exploit the resources involved therein. In most cases, they oviposit into the figs from outside without providing any pollination service. In this study, we used several different methods (adhesive traps and direct standardized field observations) to assess the colonization sequence of a diverse fig wasp fauna associated with Ficus citrifolia, section Americana, in Brazil. They consistently showed a temporal partitioning in colonization among non-pollinating fig wasp species. Idarnes species belonging to the flavicollis and incerta groups colonized figs just before or during the fig receptive phase. In contrast, Idarnes females belonging to the carme group oviposited one to three weeks later, mainly in the middle of the inter-floral phase. Eurytoma, Heterandrium, Physothorax and Torymus were later colonizers, and laid eggs either in the middle or during the late inter-floral phase. The results suggest that these Neotropical fig wasps have different strategies of resource exploitation, even among species belonging to the same genus.
Resumo:
Reproductive conflicts within animal societies occur when all females can potentially reproduce. In social insects, these conflicts are regulated largely by behaviour and chemical signalling. There is evidence that presence of signals, which provide direct information about the quality of the reproductive females would increase the fitness of all parties. In this study, we present an association between visual and chemical signals in the paper wasp Polistes satan. Our results showed that in nest-founding phase colonies, variation of visual signals is linked to relative fertility, while chemical signals are related to dominance status. In addition, experiments revealed that higher hierarchical positions were occupied by subordinates with distinct proportions of cuticular hydrocarbons and distinct visual marks. Therefore, these wasps present cues that convey reliable information of their reproductive status.
Resumo:
In Brazilian Amazonia, 20 genera and more than 200 species of polistine wasps are recorded. Local faunas with 70 to 80 species are usually found in non floodable forest environments. However, a variety of wetlands exist in the region, the most expressive in surface area being varzea systems. In this paper, information is presented on polistines from two areas of wetlands in the Brazilian states of Amazonas and Amapá. These are reciprocally compared and also with nearby terra firme locations. Collecting methods consisted of active search for nests, handnetting and automatic trapping of individuals. Forty-six species of 15 genera were collected in Mamirauá, AM, most being widespread common wasps. However, five species deserve special mention in virtue of rarity and/or restricted distribution: Metapolybia rufata, Chartergellus nigerrimus, Chartergellus punctatior, Clypearia duckei, and Clypearia weyrauchi. In Região dos Lagos, AP, 31 species of 9 genera were collected, nearly all being common species with the exception of some Polistes, like P. goeldi and P. occipitalis. Even though less rich than vespid faunas from terra firme habitats, the Mamirauá fauna proved to be quite expressive considering limitations imposed by the hydrological regime. In Região dos Lagos, however, the very low diversity found was below the worst expectations. The virtual absence of otherwise common species in environments like tidal varzea forests along Araguari River is truly remarkable. The causes of low diversity are probably related to isolation and relative immaturity of the region, allied to strong degradation of forested habitats.
Resumo:
BACKGROUND: Understanding how alternative phenotypes arise from the same genome is a major challenge in modern biology. Eusociality in insects requires the evolution of two alternative phenotypes - workers, who sacrifice personal reproduction, and queens, who realize that reproduction. Extensive work on honeybees and ants has revealed the molecular basis of derived queen and worker phenotypes in highly eusocial lineages, but we lack equivalent deep-level analyses of wasps and of primitively eusocial species, the latter of which can reveal how phenotypic decoupling first occurs in the early stages of eusocial evolution. RESULTS: We sequenced 20 Gbp of transcriptomes derived from brains of different behavioral castes of the primitively eusocial tropical paper wasp Polistes canadensis. Surprisingly, 75% of the 2,442 genes differentially expressed between phenotypes were novel, having no significant homology with described sequences. Moreover, 90% of these novel genes were significantly upregulated in workers relative to queens. Differential expression of novel genes in the early stages of sociality may be important in facilitating the evolution of worker behavioral complexity in eusocial evolution. We also found surprisingly low correlation in the identity and direction of expression of differentially expressed genes across similar phenotypes in different social lineages, supporting the idea that social evolution in different lineages requires substantial de novo rewiring of molecular pathways. CONCLUSIONS: These genomic resources for aculeate wasps and first transcriptome-wide insights into the origin of castes bring us closer to a more general understanding of eusocial evolution and how phenotypic diversity arises from the same genome.
Resumo:
We characterised a set of nine polymorphic microsatellite loci for Pleistodontes imperialis sp. 1, the pollinator wasp of Port Jackson fig (Ficus rubiginosa) in south-eastern Australia. Characterisation was performed on 30 female individuals collected from a population in Sydney, Australia. The average number of alleles per locus was 7.33, and eight loci were not in Hardy–Weinberg equilibrium. This was expected as fig wasps are known to be highly inbred. A test of genetic differentiation between two natural populations of P. imperialis sp. 1 (Sydney and Newcastle, Australia – some 120 km apart) yielded a very low FST value of 0.012, suggesting considerable gene flow. Bayesian clustering analysis using TESS 2.3.1, which does not assume Hardy–Weinberg equilibrium, however, indicated potential spatial substructuring between the Sydney and Newcastle populations, as well as within the Sydney population. The described loci were also characterised for two other species in the P. imperialis complex: P. imperialis sp. 2 (Townsville, Australia) and P. imperialis sp. 4 (Brisbane, Australia). Seven and six of the nine loci were polymorphic for P. imperialis sp. 2 and P.imperialis sp. 4, respectively.
Resumo:
Stings by Polistes wasps can cause life-threatening allergic reactions, pain and inflammation. We examined the changes in microvascular permeability and neutrophil influx caused by the venom of Polistes lanio a paper wasp found in southeastern Brazil. The intradermal injection of wasp venom caused long-lasting paw oedema and dose-dependently increased microvascular permeability in mouse dorsal skin. SR140333, an NK(1) receptor antagonist, markedly inhibited the response, but the NK(2) receptor antagonist SR48968 was ineffective. The oedema was reduced in capsaicin-treated rats, indicating a direct activation of sensory fibres. Dialysis of the venom partially reduced the oedema and the remaining response was further inhibited by SR140333. Mass spectrometric analysis of the venom revealed two peptides (QPPTPPEHRFPGLM and ASEPTALGLPRIFPGLM) with sequence similarities to the C-terminal region of tachykinin-like peptides found in Phoneutria nigniventer spider venom and vertebrates. Wasp venom failed to release histamine from mast cells in vitro and spectrofluorometric assay of the venom revealed a negligible content of histamine in the usual dose of P.l. lanio venom (1 nmol of histamine/7 mu g of venom)that was removed by dialysis. The histamine H(1) receptor antagonist pyrilamine, but not bradykinin B(1) or B(2) receptor antagonists, inhibited venom-induced oedema. In conclusion, P. l. lanio venom induces potent oedema and increases vascular permeability in mice, primarily through activation of tachykinin NK(1) receptors by substance P released from sensory C fibres, which in turn releases histamine from dermal mast cells. This is the first description of a neurovascular mechanism for P. l. lanio venom-mediated inflammation. The extent to which the two tachykinin-like peptides identified here contribute to this neurogenic inflammatory response remains to be elucidated. (c) 2008 Elsevier Ltd. All rights reserved.