950 resultados para PACIFIC SALMON


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the feeding ecology of juvenile salmon during the critical early life-history stage of transition from shallow to deep marine waters by sampling two stations (190 m and 60 m deep) in a northeast Pacific fjord (Dabob Bay, WA) between May 1985 and October 1987. Four species of Pacific salmon—Oncorhynchus keta (chum) , O. tshawytscha (Chinook), O. gorbuscha (pink), and O. kisutch (coho)—were examined for stomach contents. Diets of these fishes varied temporally, spatially, and between species, but were dominated by insects, euphausiids, and decapod larvae. Zooplankton assemblages and dry weights differed between stations, and less so between years. Salmon often demonstrated strongly positive or negative selection for specific prey types: copepods were far more abundant in the zooplankton than in the diet, whereas Insecta, Araneae, Cephalapoda, Teleostei, and Ctenophora were more abundant in the diet than in the plankton. Overall diet overlap was highest for Chinook and coho salmon (mean=77.9%)—species that seldom were found together. Chum and Chinook salmon were found together the most frequently, but diet overlap was lower (38.8%) and zooplankton biomass was not correlated with their gut fullness (%body weight). Thus, despite occasional occurrences of significant diet overlap between salmon species, our results indicate that interspecific competition among juvenile salmon does not occur in Dabob Bay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The U.S. Fish Commission Steamer Albatross made its first cruise to Alaska in 1888 primarily to research the Pacific cod, Gadus macrocephalus; however, Pacific salmon Oncorhynchus spp., was also to be studied, if time permitted. In 1889, concern for salmon overharvesting prompted Congress to authorize an investigation into the habits, abundance, and distribution of Alaska’s salmon, and in 1890 the Albatross returned to Alaska. Over the next 20+ years the Albatross made many other productive and pioneering research voyages to Alaska, the last in 1914.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For purposes ofthe Endangered Species Act (ESA), a "species" is defined to include "any distinct population segment of any species of vertebrate fish or wildlife which interbreeds when mature. "Federal agencies charged with carrying out the provisions of the ESA have struggled for over a decade to develop a consistent approach for interpreting the term "distinct population segment." This paper outlines such an approach and explains in some detail how it can be applied to ESA evaluations of anadromous Pacific salmonids. The following definition is proposed: A population (or group of populations) will be considered "distinct" (and hence a "species ")for purposes of the ESA if it represents an evolutionarily significant unit (ESU) of the biological species. A population must satisfy two criteria to be considered an ESU: 1) It must be substantially reproductively isolated from other conspecific population units, and 2) It must represent an important component in the evolutionary legacy of the species. Isolation does not have to be absolute, but it must be strong enough to permit evolutionarily important differences to accrue in different population units. The second criterion would be met if the population contributes substantially to the ecological/genetic diversity of the species as a whole. Insights into the extent of reproductive isolation can be provided by movements of tagged fish, natural recolonization rates observed in other populations, measurements of genetic differences between populations, and evaluations of the efficacy of natural barriers. Each of these methods has its limitations. Identification of physical barriers to genetic exchange can help define the geographic extent of distinct populations, but reliance on physical features alone can be misleading in the absence of supporting biological information. Physical tags provide information about the movements of individual fish but not the genetic consequences of migration. Furthermore, measurements ofc urrent straying or recolonization rates provide no direct information about the magnitude or consistency of such rates in the past. In this respect, data from protein electrophoresis or DNA analyses can be very useful because they reflect levels of gene flow that have occurred over evolutionary time scales. The best strategy is to use all available lines of evidence for or against reproductive isolation, recognizing the limitations of each and taking advantage of the often complementary nature of the different types of information. If available evidence indicates significant reproductive isolation, the next step is to determine whether the population in question is of substantial ecological/genetic importance to the species as a whole. In other words, if the population became extinct, would this event represent a significant loss to the ecological/genetic diversity of thes pecies? In making this determination, the following questions are relevant: 1) Is the population genetically distinct from other conspecific populations? 2) Does the population occupy unusual or distinctive habitat? 3) Does the population show evidence of unusual or distinctive adaptation to its environment? Several types of information are useful in addressing these questions. Again, the strengths and limitations of each should be kept in mind in making the evaluation. Phenotypic/life-history traits such as size, fecundity, and age and time of spawning may reflect local adaptations of evolutionary importance, but interpretation of these traits is complicated by their sensitivity to environmental conditions. Data from protein electrophoresis or DNA analyses provide valuable insight into theprocessofgenetic differentiation among populations but little direct information regarding the extent of adaptive genetic differences. Habitat differences suggest the possibility for local adaptations but do not prove that such adaptations exist. The framework suggested here provides a focal point for accomplishing the majorgoal of the Act-to conserve the genetic diversity of species and the ecosystems they inhabit. At the same time, it allows discretion in the listing of populations by requiring that they represent units of real evolutionary significance to the species. Further, this framework provides a means of addressing several issues of particular concern for Pacific salmon, including anadromous/nonanadromous population segments, differences in run-timing, groups of populations, introduced populations, and the role of hatchery fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As threatened and endangered species, wild Pacific salmon are in peril. This paper discusses the differences of the five species of wild Pacific salmon. As salmon go through several stages of their lifecycles, they face a myriad of threats to their existence. Threats from humans in the form of hydropower dams, habitat destruction, harvesting issues, and hatcheries are explained. A draft recovery plan for salmon in the Puget Sound area of Washington State is used as a case study. Strengths and weaknesses of this plan are discussed. The paper then discusses the need for growth management laws supporting salmon habitat and a change in individual behaviors if wild Pacific salmon sustainability is to become a reality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Key Messages [pdf, 2.5 Mb] Climate Information Gaps Ocean Productivity Information gaps Living Marine Resources Information gaps Climate [pdf, 1.8 Mb] Productivity [pdf, 5.2 Mb] Nutrients Phytoplankton Zooplankton Living Resources [pdf, 10 Mb] Subarctic coastal systems Central oceanic gyres Temperate coastal and oceanic systems Marine mammals The Human Population [pdf, 5 Mb] Contaminants and Habitat Modifications Aquaculture Knowledge Gaps Glossary Ocean and Climate Changes [pdf, 4.1Mb] Highlights Introduction Atmospheric Indices Change in 1998/99 Comparison of Atmospheric Indices Authorship Yellow Sea / East China Sea [pdf, 2.3 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Benthos Fish and invertebrates Marine birds and mammals Issues Critical factors causing change Authorship Japan/East Sea [pdf, 3.3 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Critical factors causing change Issues Authorship Okhotsk Sea [pdf, 1.7 Mb] Background Status and Trends Climate Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Issues Critical factors causing change Authorship Oyashio / Kuroshio [pdf, 4.5 Mb] Highlights Background Status and Trends Hydrography Plankton Fish and Invertebrates Marine Birds and Mammals Issues Authorship Western Subarctic Gyre [pdf, 4.5 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Issues Authorship Bering Sea [pdf, 2.2 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Critical Factors Causing Change Issues Authorship Gulf of Alaska [pdf, 2.6 Mb] Highlights Background Status and trends Hydrography Chemistry Plankton Fish and Invertebrates Marine birds and mammals Critical factors causing change Issues Authorship California Current [pdf, 2.7 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Critical Factors Causing Change Issues Authorship Gulf of California [pdf, 1.7 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fisheries Marine Birds and Mammals Critical Factors Causing Change Issues Authorship Transition Zone [pdf, 2.5 Mb] Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Issues Authorship Tuna [pdf, 1.5 Mb] Highlights Background Pacific bluefin tuna Albacore tuna Status and trends Ecosystem model and climate forcing Authorship Pacific halibut [pdf, 1.1 Mb] Background The Fishery Climate Influences Authorship Pacific salmon [Updated, pdf, 0.4 Mb] Background Status and Trends Washington, Oregon, and California British Columbia Southeast Alaska Central Alaska Western Alaska Russia Japan Authorship References [pdf, 0.5 Mb]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Knowledge of the distribution and biology of the ragfish, Icosteus aenigmaticus, an aberrant deepwater perciform of the North Pacific Ocean, has increased slowly since the first description of the species in the 1880’s which was based on specimens retrieved from a fish monger’s table in San Francisco, Calif. As a historically rare, and subjectively unattractive appearing noncommercial species, ichthyologists have only studied ragfish from specimens caught and donated by fishermen or by the general public. Since 1958, I have accumulated catch records of >825 ragfish. Specimens were primarily from commercial fishermen and research personnel trawling for bottom and demersal species on the continental shelves of the eastern North Pacific Ocean, Gulf of Alaska, Bering Sea, and the western Pacific Ocean, as well as from gillnet fisheries for Pacific salmon, Oncorhynchus spp., in the north central Pacific Ocean. Available records came from four separate sources: 1) historical data based primarily on published and unpublished literature (1876–1990), 2) ragfish delivered fresh to Humboldt State University or records available from the California Department of Fish and Game of ragfish caught in northern California and southern Oregon bottom trawl fisheries (1950–99), 3) incidental catches of ragfish observed and recorded by scientific observers of the commercial fisheries of the eastern Pacific Ocean and catches in National Marine Fisheries Service trawl surveys studying these fisheries from 1976 to 1999, and 4) Japanese government research on nearshore fisheries of the northwestern Pacific Ocean (1950–99). Limited data on individual ragfish allowed mainly qualitative analysis, although some quantitative analysis could be made with ragfish data from northern California and southern Oregon. This paper includes a history of taxonomic and common names of the ragfish, types of fishing gear and other techniques recovering ragfish, a chronology of range extensions into the North Pacific and Bering Sea, reproductive biology of ragfish caught by trawl fisheries off northern California and southern Oregon, and topics dealing with early, juvenile, and adult life history, including age and growth, food habits, and ecology. Recommendations for future study are proposed, especially on the life history of juvenile ragfish (5–30 cm FL) which remains enigmatic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous consideration of the relationship between climate and the survival rate of Pacific salmon eggs and fry has been confined to effects of large variation in the ambient freshwater environment; e.g., stream discharge, temperature, turbidity. This analysis shows sea surface temperatures during the last year of life of maturing adult salmon are also strongly associated with the subsequent survival rate of salmon eggs and fry is fresh water, presumably through development of the future eggs or sperm. In several stocks of three species of North American salmon, the association between the "marine" climate and egg survival is stronger than, or additive to, any estimated climatic association in fresh water. This apparent and surprising link between fresh water and the distant ocean has some interesting and complex implications for management of future salmon production.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Twenty-six stocks of Pacific salmon and trout (Oncorhynchus spp.), representing evolutionary significant units (ESU), are listed as threatened or endangered under the Endangered Species Act (ESA) and six more stocks are currently being evaluated for listing. The ecological and economic consequences of these listings are large; therefore considerable effort has been made to understand and respond to these declining populations. Until recently, Pacific harbor seals (Phoca vitulina richardsi) on the west coast increased an average of 5% to 7% per year as a result of the Marine Mammal Protection Act of 1972 (Brown and Kohlman2). Pacific salmon are seasonally important prey for harbor seals (Roffe and Mate, 1984; Olesiuk, 1993); therefore quantifying and understanding the interaction between these two protected species is important for Morphobiologically sound management strategies. Because some Pacific salmonid species in a given area may be threatened or endangered, while others are relatively abundant, it is important to distinguish the species of salmonid upon which the harbor seals are preying. This study takes the first step in understanding these interactions by using molecular genetic tools for species-level identification of salmonid skeletal remains recovered from Pacific harbor seal scats.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pacific salmon populations have declined due to human activity in the Pacific Northwest, resulting in decreased delivery of marine-derived nutrients to streams. Managers use artificial nutrient additions to increase juvenile salmon growth and survival and assume that added nutrients stimulate biofilm production, which propagates up the food web to juvenile salmon. We assessed biofilm responses (standing crop, nutrient limitation, and metabolism) to experimental additions of salmon carcass analog in tributaries of the Salmon River, Idaho in 2010 and 2011. Biofilm standing crop and nutrient limitation did not respond to analog, but primary productivity and respiration increased in the subset of streams where they were measured. Discrepancies between biofilm productivity and standing crop may occur if standing crop is constrained by physical and biological factors. Thus, conclusions about biofilm response to analog should not be based on standing crop alone and mitigation research may benefit from nutrient budgets of entire watersheds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The state of PICES science - 2005 (pdf, 0.2 Mb) 2005 Wooster Award (pdf, 0.4 Mb) Korea and U.S. federate metadata collection (pdf, 0.3 Mb) PICES Interns (pdf, 0.3 Mb) Studies on long-term variation of ocean ecosystem / climate interactions based on the Odate collection (pdf, 0.2 Mb) Hokkaido University Fisheries & Oceanographic Database CD-ROM (pdf, 0.2 Mb) Workshop on sardine and anchovy fluctuations (pdf, 0.1 Mb) Photo highlights of PICES XIV (pdf, 0.4 Mb) Workshop on SEEDS-II (pdf, 0.2 Mb) NPAFC-PICES joint symposium "The status of Pacific salmon and their role in North Pacific marine ecosystems" (pdf, 0.2 Mb) PICES Calendar (pdf, 0.2 Mb) New Chairman of the PICES Fishery Science Committee (pdf, 0.1 Mb) The state of the western North Pacific in the first half of 2005 (pdf, 0.4 Mb) Latest and upcoming PICES publications (pdf, 0.4 Mb) Recent trends in waters of the subarctic NE Pacific (pdf, 0.2 Mb) The Bering Sea: Current status and recent events (pdf, 0.1 Mb) PICES and GLOBEC to sponsor workshop on sub-arctic seas (pdf, 0.1 Mb) Professor Mikhail N. Koshlyakov - 75 (pdf, 0.1 Mb) Obituary - Dr. Al Tyler (pdf, 0.1 Mb)