956 resultados para P53 GENE DELETION
Resumo:
The combination of ionizing radiation and gene therapy has been investigated. However, there are very few reports about the combination of heavy-ion irradiation and gene therapy. To determine if the pre-exposure to low-dose heavy ion beam enhances the suppression of AdCMV-p53 on non-small lung cancer (NSLC), the cells pre-irradiated or non-irradiated were infected with 20, 40 MOI of AdCMV-p53. Survival fraction and the relative biology effect (RBE) were determined by clonogenic assay. The results showed that the proportions of p53 positive cells in C-12(6+) beam induced AdCMV-p53 infected cells were more than 90%, which were significantly more than those in gamma-ray induced AdCMV-p53 infected cells. The pre-exposure to low-dose 12C6+ beam significantly prevented the G(0)/G(1) arrest and activated G(2)/M checkpoints. The pre-exposure to C-12(6+) beam significantly improved cell to apoptosis. RBEs for the C-12(6+)+ AdCMV-p53 infection groups were 30%-60%,20% -130% and 30%-70% more than those for the C-12(6+)_irradiated only, AdCMV-p53 infected only, and gamma-irradiation induced AdCMVp53 infected groups, respectively. The data suggested that the pre-exposure to low-dose C-12(6+) beam significantly promotes exogenous p53 expression in NSLC, and the suppression of AdCMV-p53 gene therapy on NSLC.
Resumo:
Background. The purpose of this study was to investigate whether adenovirus-mediated p53 transfer could sensitize hepatocellular carcinoma to heavy-ion irradiation. Methods. HepG2 cells were preexposed to a C-12(6+) beam, and then infected with replication-deficient adenovirus recombinant vectors containing human wild-type p53 (AdCMV-p53) (C-12(6+) irradiation + AdCMV-p53 infection). The survival fraction was determined by clonogenic assay. The cell cycle, cell apoptosis, and p53 expression were monitored by flow cytometric analysis. Results. p53 expression in C-12(6+) irradiation + AdCMV-p53 infection groups was markedly higher than that in C-12(6+) irradiation only groups (P < 0.05), suggesting that the preexposure to the C-12(6+) beam promoted the expression of exogenous p53 in HepG2 cells infected with AdCMV-p53 only. The G(1)-phase arrest and cell apoptosis in the C-12(6+) irradiation + AdCMV-p53 infection groups were significantly more than those in the C-12(6+) irradiated groups (P < 0.05). The survival fractions of the C-12(6+) irradiation + AdCMV-p53 infection groups decreased by 30%-49% compared with those of the C-12(6+) beam-irradiated only groups (P < 0.05). Conclusions. Adenovirus-mediated p53 gene transfer can promote G(1)-phase arrest and cell apoptosis, thus sensitizing hepatocellular carcinoma cells to heavy-ion irradiation.
Resumo:
The primary enzyme involved in polyphosphate (polyP) synthesis, polyP kinase (ppk), has been deleted in Pseudomonas putida KT2440. This has resulted in a threefold to sixfold reduction in polyhydroxyalkanoate (PHA) accumulation compared with the wild type under conditions of nitrogen limitation, with either temperature or oxidative (H2O2) stress, when grown on glucose. The accumulation of PHA by Δppk mutant was the same as the wild type under nitrogen-limiting growth conditions. There was no difference in polyP levels between wild-type and Δppk strains under all growth conditions tested. In the Δppk mutant proteome, polyP kinase (PPK) was undetectable, but up-regulation of the polyp-associated proteins polyP adenosine triphosphate (ATP)/nicotinamide adenine dinucleotide (NAD) kinase (PpnK), a putative polyP adenosine monophosphate (AMP) phosphotransferase (PP_1752), and exopolyphosphatase was observed. Δppk strain exhibited significantly retarded growth with glycerol as carbon and energy source (42 h of lag period compared with 24 h in wild-type strain) but similar growth to the wild-type strain with glucose. Analysis of gene transcription revealed downregulation of glycerol kinase and the glycerol facilitator respectively. Glycerol kinase protein expression was also downregulated in the Δppk mutant. The deletion of ppk did not affect motility but reduced biofilm formation. Thus, the knockout of the ppk gene has resulted in a number of phenotypic changes to the mutant without affecting polyP accumulation.
Resumo:
Autosomal recessive spastic paraplegia with thinning of corpus callosum (ARHSP-TCC) is a complex form of HSP initially described in Japan but subsequently reported to have a worldwide distribution with a particular high frequency in multiple families from the Mediterranean basin. We recently showed that ARHSP-TCC is commonly associated with mutations in SPG11/KIAA1840 on chromosome 15q. We have now screened a collection of new patients mainly originating from Italy and Brazil, in order to further ascertain the spectrum of mutations in SPG11, enlarge the ethnic origin of SPG11 patients, determine the relative frequency at the level of single Countries (i.e., Italy), and establish whether there is one or more common mutation. In 25 index cases we identified 32 mutations; 22 are novel, including 9 nonsense, 3 small deletions, 4 insertions, 1 in/del, 1 small duplication, 1 missense, 2 splice-site, and for the first time a large genomic rearrangement. This brings the total number of SPG11 mutated patients in the SPATAX collection to 111 cases in 44 families and in 17 isolated cases, from 16 Countries, all assessed using homogeneous clinical criteria. While expanding the spectrum of mutations in SPG11, this larger series also corroborated the notion that even within apparently homogeneous population a molecular diagnosis cannot be achieved without full gene sequencing. (C) 2008 Wiley-Liss, Inc.
Resumo:
CONTEXTO: Alterações do gene supressor de tumor p53, como mutações e deleções, são lesões genéticas encontradas com maior freqüência nas neoplasias humanas, incluindo câncer de mama, pulmão e cólon. Entre as malignidades hematológicas, o gene 53 é freqüentemente mutado no linfoma de Burkitt, sendo detectadas mutações em 30-40% das amostras tumorais e em 70% das linhagens celulares. OBJETIVO: Analisar as alterações do gene p53 em crianças com linfoma não-Hodgkin de origem B. TIPO DE ESTUDO: Estudo descritivo. LOCAL: Centro de Oncologia Terciário. PARTICIPANTES: O estudo analisou 12 pacientes com linfoma não-Hodgkin B classificados como linfoma de Burkitt. A análise de possíveis mutações do gene p53 foi realizada pela técnica de PCR-SSCP dos exons 5, 6 ,7 e 8/9 do gene. RESULTADOS: Um padrão anormal de migração foi observado em quatro pacientes (33.3%), em um paciente no exon 6 e em três no exon 7. Os casos positivos incluíam dois pacientes que evoluíram para o óbito por progressão da doença. CONCLUSÃO: Esses resultados preliminares sugerem que as alterações do gene p53 são freqüentes em crianças com linfoma de Burkitt e podem contribuir para patogênese ou progressão da doença.
Resumo:
Inheritance of a mutant allele of the von Hippel-Lindau tumor suppressor gene predisposes affected individuals to develop renal cysts and clear cell renal cell carcinoma. Von Hippel-Lindau gene inactivation in single renal tubular cells has indirectly been showed by immunohistochemical staining for the hypoxia-inducible factor alpha target gene product carbonic anhydrase IX. In this study we were able to show von Hippel-Lindau gene deletion in carbonic anhydrase IX positive nonneoplastic renal tubular cells, in epithelial cells lining renal cysts and in a clear cell renal cell carcinoma of a von Hippel-Lindau patient. This was carried out by means of laser confocal microscopy and immunohistochemistry in combination with fluorescence in situ hybridization. Carbonic anhydrase IX negative normal renal tubular cells carried no von Hippel-Lindau gene deletion. Furthermore, recent studies have indicated that the von Hippel-Lindau gene product is necessary for the maintenance of primary cilia stability in renal epithelial cells and that disruption of the cilia structure by von Hippel-Lindau gene inactivation induces renal cyst formation. In our study, we show a significant shortening of primary cilia in epithelial cells lining renal cysts, whereas, single tubular cells with a von Hippel-Lindau gene deletion display to a far lesser extent signs of cilia shortening. Our in vivo results support a model in which renal cysts represent precursor lesions for clear cell renal cell carcinoma and arise from single renal tubular epithelial cells owing to von Hippel-Lindau gene deletion.
Resumo:
Neuronal nitric oxide synthase (nNOS) generates NO in neurons, and heme-oxygenase-2 (HO-2) synthesizes carbon monoxide (CO). We have evaluated the roles of NO and CO in intestinal neurotransmission using mice with targeted deletions of nNOS or HO-2. Immunohistochemical analysis demonstrated colocalization of nNOS and HO-2 in myenteric ganglia. Nonadrenergic noncholinergic relaxation and cyclic guanosine 3′,5′ monophosphate elevations evoked by electrical field stimulation were diminished markedly in both nNOSΔ/Δ and HO-2Δ/Δ mice. In wild-type mice, NOS inhibitors and HO inhibitors partially inhibited nonadrenergic noncholinergic relaxation. In nNOSΔ/Δ animals, NOS inhibitors selectively lost their efficacy, and HO inhibitors were inactive in HO-2Δ/Δ animals.
Resumo:
Missense mutations within the central DNA binding region of p53 are the most prevalent mutations found in human cancer. Numerous studies indicate that ‘hot-spot’ p53 mutants (which comprise ∼30% of human p53 gene mutations) are largely devoid of transcriptional activity. However, a growing body of evidence indicates that some non-hot-spot p53 mutants retain some degree of transcriptional activity in vivo, particularly against strong p53 binding sites. We have modified a previously described yeast-based p53 functional assay to readily identify such partial loss of function p53 mutants. We demonstrate the utility of this modified p53 functional assay using a diverse panel of p53 mutants.
Resumo:
Olfactory marker protein (OMP) is an abundant, phylogentically conserved, cytoplasmic protein of unknown function expressed almost exclusively in mature olfactory sensory neurons. To address its function, we generated OMP-deficient mice by gene targeting in embryonic stem cells. We report that these OMP-null mice are compromised in their ability to respond to odor stimull, providing insight to OMP function. The maximal electroolfactogram response of the olfactory neuroepithelium to several odorants was 20-40% smaller in the mutants compared with controls. In addition, the onset and recovery kinetics following isoamyl acetate stimulation are prolonged in the null mice. Furthermore, the ability of the mutants to respond to the second odor pulse of a pair is impaired, over a range of concentrations, compared with controls. These results imply that neural activity directed toward the olfactory bulb is also reduced. The bulbar phenotype observed in the OMP-null mouse is consistent with this hypothesis. Bulbar activity of tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis, and content of the neuropeptide cholecystokinin are reduced by 65% and 50%, respectively. This similarity to postsynaptic changes in gene expression induced by peripheral olfactory deafferentation or naris blockade confirms that functional neural activity is reduced in both the olfactory neuroepithelium and the olfactory nerve projection to the bulb in the OMP-null mouse. These observations provide strong support for the conclusion that OMP is a novel modulatory component of the odor detection/signal transduction cascade.
Resumo:
Gene disruptions and deletions of up to 20kb have been generated by homologous recombination with appropriate targeting vectors in murine embryonic stem (ES) cells. Because we could not obtain a deletion of about 200 kb in the mouse amyloid precursor protein gene by the classical technique, we employed strategies involving the insertion of loxP sites upstream and downstream of the region to be deleted by homologous recombination and elicited excision of the loxP-flanked region by introduction of a Cre expression vector into the ES cells. In the first approach, the loxP sequences were inserted in two successive steps and after each step, ES cell clones were isolated and characterized. Deletion of the loxP-flanked sequence was accomplished by introducing the cre gene in a third step. In the second approach, ES cells containing the upstream loxP cassette were electroporated simultaneously with the downstream loxP targeting vector and the Cre expression plasmid. ES cells were obtained that gave rise to chimeric mice capable of germ-line transmission of the deleted amyloid precursor protein allele.
Resumo:
Human cancer cells with a mutated p53 tumor-suppressor gene have a selective growth advantage and may exhibit resistance to ionizing radiation and certain chemotherapeutic agents. To examine the prognostic value of mutations in the p53 gene, a cohort of 90 Midwestern Caucasian breast cancer patients were analyzed with methodology that detects virtually 100% of all mutations. The presence of a p53 gene mutation was by far the single most predictive indicator for recurrence and death (relative risks of 4.7 and 23.2, respectively). Direct detection of p53 mutations had substantially greater prognostic value than immunohistochemical detection of p53 overexpression. Analysis of p53 gene mutations may permit identification of a subset of breast cancer patients who, despite lack of conventional indicators of poor prognosis, are at high risk of early recurrence and death.