41 resultados para P123
Resumo:
In certain applications copolymer P123 (E21P67E21) is dissolved in water-ethanol mixtures, initially to form micellar solutions and eventually to gel. For P123 in 10, 20, and 30 wt % aqueous ethanol we used dynamic light scattering from dilute solutions to confirm micellization, oscillatory rheometry, and visual observation of mobility (tube inversion) to determine gel formation in concentrated solutions and small-angle X-ray scattering (SAXS) to determine gel structure. Except for solutions in 30 wt % aqueous ethanol, a clear-turbid transition was encountered on heating dilute and concentrated micellar solutions alike, and as for solutions in water alone (Chaibundit et al. Langmuir 2007, 23, 9229) this could be ascribed to formation of wormlike micelles. Dense clouding, typical of phase separation, was observed at higher temperatures. Regions of isotropic and birefringent gel were defined for concentrated solutions and shown (by SAXS) to have Cubic (fcc and hcp) and hexagonal structures, consistent with packed spherical and elongated micelles, respectively. The cubic gels (0, 10, and 20 wt % ethanol) were clear, while the hex gels were either turbid (0 and 10 wt % ethanol), turbid enclosing a clear region (20 wt % ethanol), or entirely clear (30 wt % ethanol). The SAXS profile was unchanged between turbid and clear regions of the 20 wt % ethanol gel. Temperature scans of dynamic moduli showed (as expected) a clear distinction between high-modulus cubic gels (G'(max) approximate to 20-30 kPa) and lower modulus hex gels (G'(max) < 10 kPa).
Resumo:
Gel diagrams based on tube inversion and oscillatory rheometry are reported for Pluronic copolymers F127 (E98P67E98) and P123 (E21P67E21) in mixtures with anionic surfactant sodium dodecyl sulfate (SDS). Total concentrations (e, SDS+copolymer) were as high as 50 wt% with mole ratios SDS/copolymer (mr) in the ranges 1-5 (F127) a lid 1-7 (PI 23). Temperatures were its high as 90 degrees C. Determination of the temperature dependences of the dynamic moduli served to confirm the gel boundaries from tube inversion and to reveal the high elastic moduli of the gels, e.g., compared at corn parable positions in the gel phase, a 50 wt% SDS/P123 wit h mr = 7 had G' three times that of a corresponding gel of P123 alone. Sin all-angle X-ray scattering (SAX S) was used to show that the structures of all the SDS/F127 gels were bee and that the structures of the SDS/P123 gels with mr = I were either fcc(c = 30 wt%) or hex (c = 40 wt%). Assignment of structures to SDS/P123 gels with values of mr in the range 3-7 was more difficult, as high-order scattering peaks Could be very weak, and at the higher values of c and mr, the SAXS peaks included multiple reflections.
Resumo:
Muitos mecanismos provocados pela ação humana vêm gerando um aumento na queima de combustíveis fósseis e processos químicos (produtos orgânicos, carvão, madeira, óleo diesel, gasolina e outros derivados de petróleo) e, consequentemente, há um aumento na emissão de CO2 na atmosfera. Uma das alternativas para a captura desse poluente é o processo de adsorção, o qual pode ajudar na redução do CO2. As hidrotalcitas ou hidróxidos duplos lamelares (HDL s) estão dentre esses materiais estudados, já que apresentam alta estabilidade e uma boa porosidade, tornando-se assim um promissor adsorvente de gases poluentes. Os HDL s formam um grupo de argilas do tipo aniônico que consiste em camadas positivamente carregadas de óxido de metal (ou hidróxido de metal) com intercamadas de ânions. Foi constatado que ânions que possuem duas cargas negativas, estabilizam muito mais que ânions monovalentes, sendo o carbonato o mais estável dos ânions divalentes. Neste trabalho, foi proposta uma modificação na síntese direta através da co-precipitação a pH constante utilizando sais de cátions divalentes (Mg2+) e trivalentes (Al3+) reportados na literatura. Durante a síntese dos HDL s retirou-se o carbonato, bem como, utilizou-se um copolímero como um template para o alargamento das lamelas. As amostras foram caracterizadas utilizando as técnicas de DRX, TG/DTG, FTIR, MEV/EDX, MET e adsorção e dessorção de N2. Os dados obtidos indicam que a estrutura, mesmo após a modificação, apresentou resultados condizentes com os encontrados na literatura. Dentre as várias aplicações dos HDL s foi realizado o estudo da adsorção do CO2. A capacidade de adsorção do material foi testada de acordo com o tempo de contato entre o adsorvente e o adsorbato, sendo esperado que os materiais tratados com template apresentassem um maior desempenho
Resumo:
Supercritical drying (SCD) and hydrophobic ambient pressure drying (APD) aerogels were prepared from hydrolysis of tetraethoxysilane in solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (P123) in the range of composition below the threshold for the ordered mesoporous silica precipitation. APD was carried out after silylation of wet gels with trimethylchlorosilane (TMCS) or hexamethyldisilazane (HMDZ). The samples were analyzed by small-angle X-ray scattering and nitrogen adsorption. Wet gels are formed by mass-fractal domains, with fractal dimension close to 2, and larger pores superposing the pores belonging to the fractal structure in case of high P123 concentrations. Aerogels exhibit smaller-sized mass-fractal domains with larger mass-fractal dimension accounting for some porosity elimination on drying. The pore volume of the aerogels increases significantly with the P123 amount and it is even larger in the APD aerogels than in the SCD aerogels. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
All positive-strand RNA viruses utilize cellular membranes for the assembly of their replication complexes, which results in extensive membrane modification in infected host cells. These alterations act as structural and functional scaffolds for RNA replication, providing protection for the viral double-stranded RNA against host defences. It is known that different positive-strand RNA viruses alter different cellular membranes. However, the origin of the targeted membranes, the mechanisms that direct replication proteins to specific membranes and the steps in the formation of the membrane bound replication complex are not completely understood. Alphaviruses (including Semliki Forest virus, SFV), members of family Togaviridae, replicate their RNA in association with membranes derived from the endosomal and lysosomal compartment, inducing membrane invaginations called spherules. Spherule structures have been shown to be the specific sites for RNA synthesis. Four replication proteins, nsP1-nsP4, are translated as a polyprotein (P1234) which is processed autocatalytically and gives rise to a membrane-bound replication complex. Membrane binding is mediated via nsP1 which possesses an amphipathic α-helix (binding peptide) in the central region of the protein. The aim of this thesis was to characterize the association of the SFV replication complex with cellular membranes and the modification of the membranes during virus infection. Therefore, it was necessary to set up the system for determining which viral components are needed for inducing the spherules. In addition, the targeting of the replication complex, the formation site of the spherules and their intracellular trafficking were studied in detail. The results of current work demonstrate that mutations in the binding peptide region of nsP1 are lethal for virus replication and change the localization of the polyprotein precursor P123. The replication complex is first targeted to the plasma membrane where membrane invaginations, spherules, are induced. Using a specific regulated endocytosis event the spherules are internalized from the plasma membrane in neutral carrier vesicles and transported via an actin-and microtubule-dependent manner to the pericentriolar area. Homotypic fusions and fusions with pre-existing acidic organelles lead to the maturation of previously described cytopathic vacuoles with hundreds of spherules on their limiting membranes. This work provides new insights into the membrane binding mechanism of SFV replication complex and its role in the virus life cycle. Development of plasmid-driven system for studying the formation of the replication complex described in this thesis allows various applications to address different steps in SFV life cycle and virus-host interactions in the future. This trans-replication system could be applied for many different viruses. In addition, the current work brings up new aspects of membranes and cellular components involved in SFV replication leading to further understanding in the formation and dynamics of the membrane-associated replication complex.
Resumo:
Replication and transcription of the RNA genome of alphaviruses relies on a set of virus-encoded nonstructural proteins. They are synthesized as a long polyprotein precursor, P1234, which is cleaved at three processing sites to yield nonstructural proteins nsP1, nsP2, nsP3 and nsP4. All the four proteins function as constitutive components of the membrane-associated viral replicase. Proteolytic processing of P1234 polyprotein is precisely orchestrated and coordinates the replicase assembly and maturation. The specificity of the replicase is also controlled by proteolytic cleavages. The early replicase is composed of P123 polyprotein intermediate and nsP4. It copies the positive sense RNA genome to complementary minus-strand. Production of new plus-strands requires complete processing of the replicase. The papain-like protease residing in nsP2 is responsible for all three cleavages in P1234. This study addressed the mechanisms of proteolytic processing of the replicase polyprotein in two alphaviruses Semliki Forest virus (SFV) and Sindbis virus (SIN) representing different branches of the genus. The survey highlighted the functional relation of the alphavirus nsP2 protease to the papain-like enzymes. A new structural motif the Cys-His catalytic dyad accompanied with an aromatic residue following the catalytic His was described for nsP2 and a subset of other thiol proteases. Such an architecture of the catalytic center was named the glycine specificity motif since it was implicated in recognition of a specific Gly residue in the substrate. In particular, the presence of the motif in nsP2 makes the appearance of this amino acid at the second position upstream of the scissile bond a necessary condition for the cleavage. On top of that, there were four distinct mechanisms identified, which provide affinity for the protease and specifically direct the enzyme to different sites in the P1234 polyprotein. Three factors RNA, the central domain of nsP3 and the N-terminus of nsP2 were demonstrated to be external modulators of the nsP2 protease. Here I suggest that the basal nsP2 protease specificity is inherited from the ancestral papain-like enzyme and employs the recognition of the upstream amino acid signature in the immediate vicinity of the scissile bond. This mechanism is responsible for the efficient processing of the SFV nsP3/nsP4 junction. I propose that the same mechanism is involved in the cleavage of the nsP1/nsP2 junction of both viruses as well. However, in this case it rather serves to position the substrate, whereas the efficiency of the processing is ensured by the capability of nsP2 to cut its own N-terminus in cis. Both types of cleavages are demonstrated here to be inhibited by RNA, which is interpreted as impairing the basal papain-like recognition of the substrate. In contrast, processing of the SIN nsP3/nsP4 junction was found to be activated by RNA and additionally potentiated by the presence of the central region of nsP3 in the protease. The processing of the nsP2/nsP3 junction in both viruses occurred via another mechanism, requiring the exactly processed N-terminus of nsP2 in the protease and insensitive to RNA addition. Therefore, the three processing events in the replicase polyprotein maturation are performed via three distinct mechanisms in each of two studied alphaviruses. Distinct sets of conditions required for each cleavage ensure sequential maturation of P1234 polyprotein: nsP4 is released first, then the nsP1/nsP2 site is cut in cis, and liberation of the nsP2 N-terminus activates the cleavage of the nsP2/nsP3 junction at last. The first processing event occurs differently in SFV and SIN, whereas the subsequent cleavages are found to be similar in the two viruses and therefore, their mechanisms are suggested to be conserved in the genus. The RNA modulation of the alphavirus nonstructural protease activity, discovered here, implies bidirectional functional interplay between the alphavirus RNA metabolism and protease regulation. The nsP2 protease emerges as a signal transmitting moiety, which senses the replication stage and responds with proteolytic cleavages. A detailed hypothetical model of the alphavirus replicase core was inferred from the data obtained in the study. Similar principles in replicase organization and protease functioning are expected to be employed by other RNA viruses.
Resumo:
Mesoporous MnO2 samples with average pore-size in the range of 2-20 nm are synthesized in sonochemical method from KMnO4 by using a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123) as a soft template as well as a reducing agent. The MnO2 samples are found to be poorly crystalline. On increasing the amplitude of sonication, a change in the morphology of MnO2 from nanoparticles to nanorods and also change in porosity are observed. A high BET surface area of 245 m(2) g(-1) is achieved for MnO2 sample. The MnO2 samples are subjected to electrochemical capacitance studies by cyclic voltammetry (CV) and galvanostatic charge-discharge cycling in 0.1 M aqueous Ca(NO3)(2) electrolyte. A maximum specific capacitance (SC) of 265 Fg(-1) is obtained for the MnO2 sample synthesized in sonochemical method using an amplitude of 30 mu m. The MnO2 samples also possess good electrochemical stability due to their favourable porous structure and high surface area. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Poorly crystalline mesoporous MnO2, which is suitable for supercapacitor studies, is synthesized from neutral KMnO4 aqueous solution by hydrothermal route. But it requires a high temperature (180 A degrees C) and also a long reaction time (24 h). Addition of a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123), which is generally used as a soft template for the synthesis of nano-structured porous materials, reduces the hydrothermal temperature to 140 A degrees C and also reaction time to 2 h. When the reaction time is increased, the product morphology changes from nanoparticles to nanorods with a concomitant decrease in BET surface area. Also, the product tends to attain crystallinity. The electrochemical capacitance properties of MnO2 synthesized under varied hydrothermal conditions are studied in 0.1 M Na2SO4 electrolyte. A specific capacitance of 193 F g(-1) is obtained for the mesoporous MnO2 sample consisting of nanoparticle and nanorod mixed morphology synthesized in 6 h using P123 at 140 A degrees C.
Resumo:
Lithium-rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template and studied as a positive electrode material. The as-prepared sample possesses good crystalline structure with a broadly distributed mesoporosity but low surface area. As expected, cyclic voltammetry and charge-discharge data indicate poor electrochemical activity. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g(-1) is obtained. When the acid-treated sample is heated at 300 A degrees C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g(-1). The rate capability study suggests that the sample provides about 150 mAh g(-1) at a specific discharge current of 1.25 A g(-1). Although the cycling stability is poor, the high rate capability is attributed to porous nature of the material.
Resumo:
Mesoporous quaternary bioactive glasses and glass-ceramic with alkali-alkaline-earth oxide were successfully synthesized by using non-ionic block copolymer P123 and evaporation induced self assembly (EISA) process followed by acid treatment assisted sal-gel method. As prepared samples has been characterized for the structural, morphological and textural properties with the various analytical techniques. Glass dissolution/ion release rate in simulated body fluid (SBF) was monitored by inductively coupled plasma (ICP) emission spectroscopy, whereas the formation of apatite phase and its crystallization at the glass and glass-ceramic surface was examined by structural, textural and microscopic probes. The influence of alkaline-earth oxide content on the glass structure followed by textural property has become more evident. The pristine glass samples exhibit a wormhole-like mesoporous structure, whereas the glass-ceramic composition is found to be in three different phases, namely crystalline hydroxyapatite, wollastonite and a residual glassy phase as observed in Cerabone (R) A/W. The existence of calcium orthophosphate phase is closely associated with the pore walls comprising nanometric-sized ``inclusions''. The observed high surface area in conjunction with the structural features provides the possible explanation for experimentally observed enhanced bioactivity through the easy access of ions to the fluid. On the other hand, presence of multiple phases in glass-ceramic sample inhibits or delays the kinetics of apatite formation. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
己内酰胺是一种重要的有机化工原料。采用环己酮肟的气相Beckmann重排的方法制己内酰胺可以解决传统的液相工艺中存在的副产硫酸胺、腐蚀设备和污染环境等问题。本研究的目的是开发出适合环己酮肟的气相Beckmann重排的固体酸催化新工艺。 首先,本工作用同位素标记的方法研究了Beckmann重排在固体酸B2O3/γ-Al2O3和TS-1上的反应机理。同位素标记后的产品采用质谱测量。通过与H218O交换氧,发现环己酮肟与H218O的交换在B2O3/γ-Al2O3和TS-1只能进行到一定程度,这暗示固体酸上腈中间体的解离不如经典的机理完全。提出了解离度(α)的概念,其定义为解离了中间体腈与总中间体腈之比。通过拟合实验数据和同位素标记的产品的计算公式,获得了B2O3/γ-Al2O3和TS-1上α 值分别为0.199和0.806的结果。 其次,采用对氧化铝表面合适氟化的方法,对氟化的氧化铝的性能进行研究。发现氧化铝表面氟化可以改善Beckmann重排的性能。氧化铝表面氟化可以消除其表面碱性位,说明了催化剂表面碱性位不利于Beckmann重排。而完全氟化的氧化铝的选择性不如某些固体酸如负载B2O3和Silicalite-1,暗示着表面酸强度也影响催化剂的选择性。同时,我们对适合气相Beckmann重排的催化剂进行了简单的筛选。发现一种稀土焦磷酸盐有可能是适合此反应的催化剂。 再次,研究了稀土焦磷酸盐催化剂上气相Beckmann重排。通过对一些稀土磷酸进行XRD,FT-IR,NH3-TPD和水接触角等表征,发现这类催化剂上表面的弱酸位以及合适的表面疏水是它们具有较好性能的原因。 再次,对焦磷酸铈催化剂的合成以及反应氛围进行了优化。发现优化的反应氛围为催化剂在pH在3~4时沉淀,在500~550度焙烧,在~350度反应,载气~80ml/min,空速在0.43h-1时反应,能保持转化率在98%以上,选择性在70%以上,8小时不失活。 最后,采用P123作为模板剂合成了一种新型的中孔稀土磷酸盐,这种稀土磷酸盐具有无序的虫洞形结构。应用这种新型的中孔稀土磷酸盐于酚类甲醇氧烷基化获得了较好的结果。与不加表面活性剂的材料相比,这种中孔稀土磷酸盐在低温下具有更大的活性并且其选择性不受损失。认为这种中孔的形态对催化性能具有好的影响。
Resumo:
目前,纳米材料已经应用于很多医药和生物领域,诸如临床诊断、药物传送、体内体外荧光标记等。稀土离子掺杂的纳米材料因其独特的发光性质已被认为是有前景的生物荧光标记,二氧化硅作为环境友好发光材料也受到越来越多的重视。本论文合成稀土离子掺杂的下转换和上转换发光纳米材料,并进行表面功能化,使之连接生物药物小分子,以期作为荧光标记。同时采用不同方法制备不同大小的二氧化硅球,并研究其发光性质。 采用多醇法成功地制备出结晶程度高的CeF3:Tb3+纳米粒子。氧化硅和胺基硅烷包覆使纳米粒子具有胺基功能化,然后通过SOCl2成功地活化生物素使之连接到纳米粒子上并随之与亲合素键合。胺基功能化的CeF3:Tb3+ 纳米粒子发光产生严重的猝灭,而生物分子与纳米粒子结合后发光得到很大程度上的恢复。生物功能化的CeF3:Tb3+ 纳米粒子能很好地分散在水中,为这些CeF3:Tb3+ 纳米粒子作为生物荧光探针奠定了基础。同时以P123为结构导向剂,介孔氧化硅成功地包覆CeF3:Tb3+ 纳米粒子。介孔氧化硅层存在部分有序的六方介孔体系和部分微孔结构,该复合物保持绿色荧光性质并具有相当大的孔容和大的表面积。布洛芬能载入复合物的孔道中,在24 h内释放完全。因此,这类复合物可以在靶向的药物传送体系中具有潜在的应用价值。 利用多醇法制备出NaYF4:Yb3+, Er3+ 纳米粒子。NaYF4:Yb3+, Er3+ 纳米粒子进行胺基功能化,并通过氧化寡糖链成功地活化亲合素,使之连接到胺基功能化的纳米粒子上。生物功能化的 NaYF4:Yb3+, Er3+纳米粒子仍保持较好的上转换发光性质,可以作为生物体系的荧光探针。另外用 P123作为结构导向剂和助表面活性剂PVP 或 TMB 成功地使NaYF4:Yb3+, Er3+ 纳米粒子包覆介孔氧化硅。外层氧化硅层有介孔结构。该复合物保持红色荧光性质,并具有大的孔容、表面积。布洛芬能载入复合物的孔道中,在12 h内完全释放。 通过高温溶剂法合成出YVO4:Eu3+ 纳米粒子。粒子结晶程度高,为椭球形状,长轴为80 nm,短轴为43 nm。YVO4:Eu3+ 纳米粒子的荧光发射跃迁主要源于5D0能级。FT-IR 谱和 XPS 谱表明纳米粒子表面的配体为油酸和油胺分子。Eu3+ (5D0 level) 寿命因表面有机配体的存在比体材料的寿命短。 成功地制备出不同大小的纳米至亚微米尺度且具有发光性能的单分散二氧化硅球,其尺寸随胺基浓度的增加而增大。烧结后粒子仍保持单分散性,但其尺寸缩小。烧结后的二氧化硅球含有C杂质。亚微米尺度的二氧化硅球的发射带最大值随氨丙基三乙氧基硅烷(APTES)浓度的增加而红移,但是纳米尺度的二氧化硅球的发射带最大值红移更大。单分散二氧化硅球发光原因归于二氧化硅结构中存在的碳和氧缺陷。
Resumo:
自从1992年美孚公司成功地研究开发出介孔材料M41S后,由于其具有不同寻常的结构特点-比较均一的孔径(2-50nm)而且连续可调、较高的比表面积、较大的孔体积、孔的长程有序性以及较好的热稳定性等,具有巨大的潜在应用价值,立即引起了全世界的关注。目前,世界各国的研究主要集中在研究介孔材料的特性、形成机理、介孔材料形貌、结构和孔径的控制、新一代介孔材料的研究开发、介孔材料的改性以及介孔材料的应用等方面。本论文主要在介孔材料的合成、性能以及应用方面开展了研究。选用头尾都是憎水的三嵌段共聚物为模板制备出具有三维无序虫状孔道的介孔材料和以有孔氧化铝膜为模板制备了形态可控的介孔材料,即具有介孔结构高有序纳米管。采用一步法合成了介孔Ag/silica和Y2O3:Eu/silica材料,采用基底受限法制备了银和Y2O3:Eu纳米粒子,同时研究了Ag/silic。作为催化剂时催化性能。(1)在酸性条件下,利用头尾都是憎水的三嵌段共聚物SBS为模板、TEOS为硅源,分别选用丁酮和甲苯作选择性溶剂,通过微乳技术制备出具有三维无序虫状孔道的介孔硅材料。我们通过在SBS胶束溶液中加入TEOS/水的油水混合乳液使SBS胶束与TEOS/水混合乳液之间形成一个界面,从而使TEOS这个界面上完全水解而且生成的小分子硅齐聚物包附在SBS胶束的外表面。经过加热则使TEOS凝聚同时形成具有介孔结构的SBS/硅材料。最后,通过锻烧以移除SBS,从而得到介孔硅材料。在选用甲苯作溶剂,研究发现随着SBS用量的增加或形成胶束温度的升高比表面积、孔体积和孔径等都相应减小。因此,这两个参数可以方便地调节介孔材料的孔径、表面积和孔体积等,进而更好地控制介孔材料的性能。所制备介孔材料的壁厚与SBS用量和形成胶束温度无关,且均超过IOnm,因而材料具有较好的热稳定性,这有利于其进一步在催化剂、吸附和分离等领域应用。(2)以有孔的氧化铝膜为模板制备了具有介孔结构高有序纳米管,即在加热条件下将P123一TEOS薄膜通过毛细力引入有孔的氧化铝膜孔内,同时根据优先润湿机理使P123一TEOS组分润湿氧化铝孔的内壁并同时伴随嵌段共聚物胶束的重排、TEOS组分的凝聚收缩,随后通过烧结手段除去嵌段共聚物、通过溶解手段除去氧化铝模板,这样便在硅基底上得到了形态可控的介孔材料即有序排列的具有介孔结构的纳米管。在一定时间范围内,退火时间对纳米管的形成和生长高度有一定的影响。纳米管垂直于硅基底且纳米管套内的介孔以六方形式排列在整个纳米管套同时介孔孔道相互平行,所制备的纳米管能保持受限在氧化铝模板时的尺寸而且稳定地粘附在硅基底上。(3)在酸性条件下,采用一步法即在模板剂(P123)形成胶束之后,加入硝酸银或氧化铺和氧化忆混合物同P123胶束形成新的复合体,随后加入硅源(TEOS)以包附在复合体的外表面,从而形成具有介孔相的复合物,通过热处理我们分别制备了高有序的具有二维六方结构的介孔Ag/silica和Y203:Eu/silica材料,其中金属银或YZO3:Eu纳米粒子分散在有序的介孔孔道内。二者的比表面积、孔体积和孔径分别为786m2/g、1.22cm3/g、6.Znm和791m2/g、0.95cm3/g、3.snm。另外,我们采用基底受限法,利用旋涂法分别使介孔Ag/silica和YZO3:E记silica材料分散在硅基底上,通过溶解法除去硅墙后便得到了没有聚集的且具有狭窄粒径分布的金属银(2.5-5.snm)和姚03:Eu(1.5-3.onm)纳米粒子。原子力显微镜(AFM)证实所得到的纳米粒子呈现良好的分散状态,具有狭窄的粒径分布而且粒子尺寸都小于其介孔材料孔径。(4)分别用一步法制备的介孔Ag/SBA--15材料和金属银作为甲醇氧化制备甲醛反应的催化剂,利用甲醇转化率表示催化剂活性、甲醛和二氧化碳产率表示催化剂选择性来研究二者催化性能。由于具有高的比表面积(786扩/g)、较大的孔体积(1.22cm3/g)、较大的孔径(6.2nm)、狭窄的孔径分布和有序的介孔孔洞等特性,在反应温度473K-723K范围内,同本体银作催化剂相比尽管银仅占体系总重量的0.94wt%,介孔Ag/silic。材料却显示出极高的催化活性和催化选择性。