1000 resultados para P. (Neoponera) villosa
Resumo:
In insects' oocytes, structures called accessory nuclei can be observed. They are similar to the nucleus of the oocyte and have been detected in Hymenoptera as well as in other groups, with their source and functions still under discussion (Cassidy & King 1972). Through the use of histochemical techniques as well as ultrastructural ones, it was possible to observe several accessory nuclei surrounding the oocyte nucleus in the immature oocytes of Pachycondyla (Neoponera) villosa ants. Morphologically they were seen to be round and smaller than the germinal vesicle. When using these histochemical techniques, the only positive reaction was for proteins. Ultrastructurally they have the same morphology as the oocyte nucleus and a fine and electrondense granulation was observed inside them. The function of accessory nuclei in P (Neoponera) villosa is probably as a source of anullate lamellae and as an RNA reservoir in the oocytes. In mature oocytes (stage III), these structures are not observed, suggesting that they disappeared before this stage by releasing their contents into the oocytes' cytoplasm, according to Camargo-Mathias and Caetano (1993).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Insect oocytes are surrounded by the follicular epithelium which is simple and cuboidal, wih the mainly functions of: synthesis of vitellin membrane and chorion and synthesis and transport of hemolymph products (proteins). In Pachycondyla (Neoponera) villosa ants workers aged less than 10 days do not present the formation of ovarian follicles (oocytes, nurse cells and follicular cells) indicating that vitellogenesis starts at approximately 10 days of age. Studies of participation of the follicular epithelium in Pachycondyla (Neoponera) villosa showed that in stage I oocytes the epithelium does not present the opening of intercellular spaces. In stage II these spaces begin to be observed together with separation of the follicular epithelium from the oocyte surface. In stage III two types of material were observed in the intercellular spaces: electrodense material in the basal region and compacted material in apical one as well as follicular epithelium/oocytes interface suggesting that the extraovarian material that reach oocytes undergoes some type of modification during passage through the intercellular spaces. The follicular epithelium spaces in queen are bigger than in workers oocytes.
Resumo:
The ultrastructure of the fat body cells (trophocytes) of the last larval instar of Pachycondyla (= Neoponera) villosa is presented. The cytoplasm is restricted to the cell periphery and to the smaller strips among the vacuoles, protein granules, lipid droplets, and around the nucleus. Cytochemically, the presence of basic amino acids in the protein granules and in the nuclei was observed by using the ethanolic phosphotungstic acid technique (EPTA). The lipid droplets stained for unsaturated lipids. This result was further confirmed by gas chromatography and mass spectrometry, where the unsaturated fatty acids were identified as oleic and linoleic acids together with saturated fatty acids such as palmitic and stearic acid. Carbohydrates (glycogen) were also detected in the fat body. The glycogen is present as beta particles distributed among the lipid droplets and sometimes attached to them.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In female ants of the species Neoponera villosa the corpora allata are paired structures located dorsolaterally to the esophagus (Camargo-Mathias and Caetano, 1991). In the present study the glandular volume of the corpora allata was estimated and the activity of the glands was compared with the ovarian development. In the workers there was a relation between activity of these glands and ovaries in stages 0 to IV. In workers, with ovaries at stage V (maximum development) there was a smaller activity of the corpora allata. Another increasing activity was found in workers with ovaries at stage VII.In the queens, mainly those which were mated, whose ovaries were always fully developed, the volume of the corpora allata was smaller than those of the workers.
Resumo:
In Neoponera villosa ants, we found ovaries of the polytrophic meroistic type which is characterized by the presence of nurse cells forming together with the oocyte, the so-called follicles. The nurse cells have the primary function of supplying the oocyte with RNA, but they contribute to the supply of other elements such as glycogen. With the objetive of detecting the presence of this substance in the ovarioles of workers and queens of N.villosa ante the ovaries were removed and processed according to electron microscopy technic for glycogen detection. Glycogen is a common element in insect oocytes and is abundantly distributed in the cytoplasm of N.villosa workers and queens. However, in ovarian follicles it can only be detected at stages ET and lit of development. Glycogen synthesis probably occurs predominantly in nurse cells which transfer it into the oocyte through the nourish pore. This process requires high energy expenditure that justify the large numbers of mitochondria associated with glycogen in the nurse cell cytoplasm. The amount of glycogen in the nurse cells of queens is slightly greater than workers.
Resumo:
In Neoponera villosa ants, we found ovaries of the polytrophic meroistic type which is characterized by the presence of nurse cells forming together with the oocyte, the so-called follicles. The nurse cells have the primary function of supplying the oocyte with RNA, but they contribute to the supply of other elements such as glycogen. With the objetive of detecting the presence of this substance in the ovarioles of workers and queens of N. viillosa ants the ovaries were removed and processed according to electron microscopy technic for glycogen detection. Glycogen is a common element in insect oocytes and is abundantly distributed in the cytoplasm of N. villosa workers and queens. However, in ovarian follicles it can only be detected at stages II and III of development. Glycogen synthesis probably occurs predominantly in nurse cells which transfer it into the oocyte through the nourish pore. This process requires high energy expenditure that justify the large numbers of mitochondria associated with glycogen in the nurse cell cytoplasm. The amount of glycogen in the nurse cells of queens is slightly greater than workers.
Resumo:
In this work we present the number of larval instars in the Ponerinae ant Pachycondyla (=Neoponera) villosa. The analysis of maximal head capsule width measurement of 147 larvae was made. Four larval instars were measured: 1st instar the cephalic capsule varied from 0.18mm to 0.22mm; 2nd instar from 0.23mm to 0.27mm; 3rd instar from 0.30mm to 0.33mm and the 4th instar varied from 0.35mm to 0.38mm. The mean growth rate was 1.2375 according to the rule of Dyar. We also reviewed the number of larval instars for 35 ant species.
Resumo:
Chemical analyses of complete larvae of the first to third instar and cuticle, fat body and salivary glands extracts of fourth instar larvae using gas chromatography and gas chromatography-mass spectrometry, were performed upon Pachycondyla villosa. The results revealed that P. villosa larvae do not produce a pheromone, as only fatty acids and n-alkanes were detected. After quantifying the identified compounds, it was determined that the fat body is the main place of storage and/or production of the cuticular hydrocarbons. It was also observed that the absolute quantity of cuticular hydrocarbons increases progressively during larval development. Inferences about the transport behavior of matured larvae to the pupation place and the colony odor are discussed.
Resumo:
The cells of secretory region of the salivary glands of Pachycondyla (=Neoponera) villosa at the time of enzyme production presents the basal cellular membranes profusely folded and the intercellular junctional membranes present a few enlarged spaces. The rough endoplasmic reticulum and the Golgi bodies shift from being flat and small vesicular cisternae to enlarged vesicular cisternae according to the cell physiological state and characterize an asynchronic cell cycle. Enzymes are released into the lumen by microapocrine secretion. The stage of silk production is detected after a behavioral act, when the nurse worker separates the mature larva. At this time, the salivary gland cells present only one physiological state (synchronized secretory cycle): this state was characterized by basal cellular membrane poorly folded, intercellular junctions presenting some small spaces, rough endoplasmic reticulum compounded by flat cistenae, enlarged Golgi bodies with fibrous material inside and a few secretory vesicles containing silk, which undergo exocytosis. The silk in the lumen shows 2 forms: tactoid and flocculent material.