230 resultados para Oxytocin
Resumo:
OT (oxytocin) is secreted from the posterior pituitary gland, and its secretion has been shown to be modulated by NO (nitric oxide). In rats, OT secretion is also stimulated by hyperosmolarity of the extracellular fluid. Furthermore, NOS (nitric oxide synthase) is located in hypothalamic areas involved in fluid balance control. In the present study, we evaluated the role of the NOS/NO and HO (haem oxygenase)/CO (carbon monoxide) systems in the osmotic regulation of OT release from rat hypothalamus in vitro. We conducted experiments on hypothalamic fragments to determine the following: (i) whether NO donors and NOS inhibitors modulate OT release and (ii) whether the changes in OT response occur concurrently with changes in NOS or HO activity in the hypothalamus. Hyperosmotic stimulation induced a significant increase in OT release that was associated with a reduction in nitrite production. Osmotic stimulation of OT release was inhibited by NO donors. NOS inhibitors did not affect either basal or osmotically stimulated OT release. Blockade of HO inhibited both basal and osmotically stimulated OT release, and induced a marked increase in NOS activity. These results indicate the involvement of CO in the regulation of NOS activity. The present data demonstrate that hypothalamic OT release induced by osmotic stimuli is modulated, at least in part, by interactions between NO and CO.
Resumo:
Previous studies have shown that immunological challenges as lipopolysaccharide (LPS) administration increases plasma oxytocin (OT) concentration. Nitric oxide (NO), a free radical gas directly related to the immune system has been implicated in the central modulation of neuroendocrine adaptive responses to immunological stress. This study aimed to test the hypothesis that the NO pathway participates in the control of OT release induced by LPS injection. For this purpose, adult male Wistar rats received bolus intravenous (i.v.) injection of LPS, preceded or not by iv. or intracerebroventricular (i.c.v.) injections of aminoguanidine (AG), a selective inducible nitric oxide synthase (iNOS) inhibitor. Rats were decapitated after 2, 4 and 6 h of treatment, for measurement of OT by radioimmunoassay. In a separate set of experiments, mean arterial pressure (MAP) and heart rate (HR) were measured every 15 min over 6 h, using a polygraph. These studies revealed that LPS reduced MAP and increased HR at 4 and 6 h post-injection. LPS significantly increased plasma OT concentration at 2 and 4 h post-injection. Pre-treatment with i.c.v. AG further increased plasma OT concentration and attenuated the LPS-induced decrease in MAP, however, i.v. AG failed to show similar effects. Thus, iNOS pathway may activate a central inhibitory control mechanism that attenuates OT secretion during endotoxemic shock. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Glucocorticoids have major effects on food intake, as demonstrated by the decrease of food intake following adrenalectomy (ADX); however, the mechanisms leading to these effects are not well understood. Oxytocin (OT) has been shown to reduce food intake. We evaluated the effects of glucocorticoids on OT neuron activation and OT mRNA expression in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei induced by feeding. We also evaluated the effect of pretreatment with OT-receptor antagonist ([d(CH2)5,Tyr(Me)2,Orn8]-vasotocin, OVT) on food intake in ADX rats. Fos/OT neurons in the posterior parvocellular subdivision of the PVN were increased after refeeding, with a higher number in the ADX group, compared with sham and ADX+corticosterone (B) groups, with no difference in the medial parvocellular and magnocellular subdivisions of the PVN. ADX increased OT mRNA expression in the PVN both in fasting and refeeding condition, compared with sham and ADX+B groups. In the SON, refeeding increased the number of Fos/OT neurons, with a higher number in the ADX+B group. In fasted condition, OT mRNA expression in the SON was increased in ADX and ADX+B, compared with sham group. Pretreatment with OVT reversed the ADX-induced hypophagia, with no difference between sham and ADX+B animals. The present results show that glucocorticoid withdrawal induces a higher activation of PVN OT neurons in response to feeding, and an increase of OT mRNA expression in the PVN and OT-receptor antagonist reverses the anorexigenic effect induced by ADX These data indicate that PVN OT neurons might mediate the hypophagic effect induced by adrenalectomy. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The hypothalamus-pituitary-adrenal axis (HPA) participates in mediating the response to stressful stimuli. Within the HPA, neurons in the medial parvocellular region of paraventricular nucleus (PVN) of the hypothalamus integrate excitatory and inhibitory signals triggering secretion of corticotropin-releasing hormone (CRH), the main secretagogue of adrenocorticotropic hormone (ACTH). Stressful situations alter CRH secretion as well as other hormones, including prolactin and oxytocin. Most inputs to the PVN are of local origin, half of which are GABAergic neurons, and both GABA-A and GABA-B receptors are present in the PVN. The objective of the present study was to investigate the role of GABA-A and GABA-B receptors in the PVN`s control of stress-induced corticosterone, oxytocin and prolactin secretion. Rats Were microinjected with saline or different doses (0.5, 5 and 50 pmol) of GABA-A (bicuculine) or GABA-B (phaclofen) antagonists in the PVN. Ten minutes later, they were subjected to a stressor (ether inhalation) and blood samples were collected 30 min before and 10, 30, 60, 90 and 120 min after the stressful stimulus to measure hormone levels by radioimmunoassay. Our results indicate that GABA acts in the PVN to inhibit stress-induced corticosterone secretion via both its receptor subtypes, especially GABA-B. In contrast, GABA in the PVN stimulates oxytocin secretion through GABA-B receptors and does not alter prolactin secretion. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The study evaluated, in early post-partum anoestrous Nelore cows, if the increase in plasma oestradiol (E2) concentrations in the pre-ovulatory period and/or progesterone priming (P4 priming) preceding ovulation, induced by hormonal treatment, reduces the endogenous release of prostaglandin PGF(2)alpha and prevents premature lysis of the corpus luteum (CL). Nelore cows were subjected to temporary calf removal for 48 h and divided into two groups: GPE/eCG group (n = 10) and GPG/eCG group (n = 10). Animals of the GPE/eCG group were treated with a GnRH agonist. Seven days later, they received 400 ID of eCG, immediately after PGF(2)alpha treatment, and on day 0, 1.0 mg of oestradiol benzoate (EB). Cows of the GPG/eCG group were similarly treated as those of the GPE/eCG group, except that EB was replaced with a second dose of GnRH. All animals were challenged with oxytocin (OT) 9, 12, 15 and 18 days after EB or GnRH administration and blood samples were collected before and 30 min after OT. Irrespective of the treatments, a decline in P4 concentration on day 18 was observed for cows without P4 priming. However, animals exposed to P4 priming, treated with EB maintained high P4 concentrations (8.8 +/- 1.2 ng/ml), whereas there was a decline in P4 on day 18 (2.1 +/- 1.0 ng/ml) for cows that received GnRH to induce ovulation (p < 0.01). Production of 13,14-dihydro-15-keto prostaglandin F(2)alpha (PGFM) in response to OT increased between days 9 and 18 (p < 0.01), and this increase tended to be more evident in animals not exposed to P4 priming (p < 0.06). In conclusion, the increase in E2 during the pre-ovulatory period was not effective in inhibiting PGFM release, which was lower in P4-primed than in non-primed animals. Treatment with EB promoted the maintenance of elevated P4 concentrations 18 days after ovulation in P4-primed animals, indicating a possible beneficial effect of hormone protocols containing EB in animals with P4 priming.
Resumo:
As in eutherians, maturation of the fetal pituitary and adrenal glands together with an increase in prostaglandin and mesotocin or oxytocin production initiates birth in marsupials. in this study, prostaglandin (Lutalyse) or oxytocin (Syntocinon) were administered to pregnant bandicoots at 05:00 h on the calculated day of birth and the resultant effects were filmed for analysis. The administration of prostaglandin caused the bandicoot to adopt the birth position several minutes after injection (n = 2). However, the bandicoot did not give birth for several hours. Birth occurred at a similar time of day to that observed for untreated bandicoots (n = 7), between 08:00 h and 12:00 h. After an injection of oxytocin, the bandicoot assumed the birth position and birth occurred within several minutes. The young were alive while still connected to their allantoic stalks. However, they were unable to attach to the teats and did not survive (n = 4). The induced young were the colour of venous blood and died soon after the umbilicus was separated, indicating that the cardiopulmonary system of these neonates was underdeveloped and inadequate to maintain life. The results from this study demonstrate that prostaglandin is required to prepare the bandicoot for birth, and mesotocin is required for contraction of the uterus and for birth to occur.
Resumo:
Maturation of the fetal pituitary and adrenal glands allows the secretion of cortisol, which in turn leads to an increase in prostaglandin and mesotocin production. The production of prostaglandin and mesotocin results in an increase in uterine contractions and initiates birth in marsupials. The major metabolite of PGF(2alpha), 13,14-dihydro-15-keto-prostaglandin F-2alpha (PGFM), has been found in the plasma of the possum at the time of birth and administration of PGF(2alpha) to female possums induced the adoption of the birth position. Evidence that mesotocin is an integral hormone of birth in the tammar wallaby indicates that both PGF(2alpha) and mesotocin or oxytocin are required for marsupial birth. The presence of PGF(2alpha) receptors in the uterus and corpus luteum of the possum, and the in vitro uterine responsiveness to PGF(2alpha) or oxytocin, were examined. PGF(2alpha) receptors were not observed in possum uteri and the inability of PGF(2alpha) to cause contractions indicates that PGF(2alpha) is not involved directly in contraction of the uterus at parturition. The presence of oxytocin and mesotocin receptors in the uterus of possoms and the ability of oxytocin to induce uterine contraction in vitro supports the view that mesotocin is required for expulsion of the young from the uterus. Low numbers of PGF(2alpha) receptors were found in the possum corpus luteum at birth, indicating an involvement of PGF(2alpha) in regression of the corpus luteum.
Resumo:
Oxytocin (OT) is thought to play an important role in human interpersonal information processing and behavior. By inference, OT should facilitate empathic responding, i.e. the ability to feel for others and to take their perspective. In two independent double-blind, placebo-controlled between-subjects studies, we assessed the effect of intranasally administered OT on affective empathy and perspective taking, whilst also examining potential sex differences (e.g., women being more empathic than men). In study 1, we provided 96 participants (48 men) with an empathy scenario and recorded self reports of empathic reactions to the scenario, while in study 2, a sample of 120 individuals (60 men) performed a computerized implicit perspective taking task. Whilst results from Study 1 showed no influence of OT on affective empathy, we found in Study 2 that OT exerted an effect on perspective taking ability in men. More specifically, men responded faster than women in the placebo group but they responded as slowly as women in the OT group. We conjecture that men in the OT group adopted a social perspective taking strategy, such as did women in both groups, but not men in the placebo group. On the basis of results across both studies, we suggest that self-report measures (such as used in Study 1) might be less sensitive to OT effects than more implicit measures of empathy such as that used in Study 2. If these assumptions are confirmed, one could infer that OT effects on empathic responses are more pronounced in men than women, and that any such effect is best studied using more implicit measures of empathy rather than explicit self-report measures.
Resumo:
The last several years have seen an increasing number of studies that describe effects of oxytocin and vasopressin on the behavior of animals or humans. Studies in humans have reported behavioral changes and, through fMRI, effects on brain function. These studies are paralleled by a large number of reports, mostly in rodents, that have also demonstrated neuromodulatory effects by oxytocin and vasopressin at the circuit level in specific brain regions. It is the scope of this review to give a summary of the most recent neuromodulatory findings in rodents with the aim of providing a potential neurophysiological basis for their behavioral effects. At the same time, these findings may point to promising areas for further translational research towards human applications.
Resumo:
Oxytocin is a neuropeptide that can reduce neophobia and improve social affiliation. In vitro, oxytocin induces a massive release of GABA from neurons in the lateral division of the central amygdala which results in inhibition of a subpopulation of peripherally projecting neurons in the medial division of the central amygdala (CeM). Common anxiolytics, such as diazepam, act as allosteric modulators of GABA(A) receptors. Because oxytocin and diazepam act on GABAergic transmission, it is possible that oxytocin can potentiate the inhibitory effects of diazepam if both exert their pre, - respectively postsynaptic effects on the same inhibitory circuit in the central amygdala. We found that in CeM neurons in which diazepam increased the inhibitory postsynaptic current (IPSC) decay time, TGOT (a specific oxytocin receptor agonist) increased IPSC frequency. Combined application of diazepam and TGOT resulted in generation of IPSCs with increased frequency, decay times as well as amplitudes. While individual saturating concentrations of TGOT and diazepam each decreased spontaneous spiking frequency of CeM neurons to similar extent, co-application of the two was still able to cause a significantly larger decrease. These findings show that oxytocin and diazepam act on different components of the same GABAergic circuit in the central amygdala and that oxytocin can facilitate diazepam effects when used in combination. This raises the possibility that neuropeptides could be clinically used in combination with currently used anxiolytic treatments to improve their therapeutic efficacy.
Resumo:
The hypothalamic neuropeptide oxytocin (OT), which controls childbirth and lactation, receives increasing attention for its effects on social behaviors, but how it reaches central brain regions is still unclear. Here we gained by recombinant viruses selective genetic access to hypothalamic OT neurons to study their connectivity and control their activity by optogenetic means. We found axons of hypothalamic OT neurons in the majority of forebrain regions, including the central amygdala (CeA), a structure critically involved in OT-mediated fear suppression. In vitro, exposure to blue light of channelrhodopsin-2-expressing OT axons activated a local GABAergic circuit that inhibited neurons in the output region of the CeA. Remarkably, in vivo, local blue-light-induced endogenous OT release robustly decreased freezing responses in fear-conditioned rats. Our results thus show widespread central projections of hypothalamic OT neurons and demonstrate that OT release from local axonal endings can specifically control region-associated behaviors.
Resumo:
Long-term implications of the exposure to traumatizing experiences during childhood or adolescence, such as sexual abuse, or cancer, have been documented, namely the subjects' response to an acute stress in adulthood. Several indicators of the stress response have been considered (e.g. cortisol, heart rate). Oxytocin (OT) response to an acute stress of individuals exposed to trauma has not been documented. Eighty subjects (n=26 women who had experienced episodes of child abuse, n=25 men and women healthy survivors of cancer in childhood or adolescence, and 29 controls) have been submitted to a laboratory session involving an experimental stress challenge, the Trier social stress test. Overall, there was a clear OT response to the psychosocial challenge. Subjects having experienced a childhood/adolescence life-threatening illness had higher mean levels of OT than both abused and control subjects. There was a moderate negative relationship between OT and salivary cortisol. It is suggested that an acute stress stimulates OT secretion, and that the exposure to enduring life-threatening experiences in childhood/adolescence has long-lasting consequences regarding the stress system and connected functions, namely the activation of OT secretion. Better knowledge of such long-term implications is important so that to prevent dysregulations of the stress responses, which have been shown to be associated to the individual's mental health.
Resumo:
There are many factors contributing to individual variations in the response to stressful experiences. The present study evaluated the patterns of stress responses according to attachment representations in 28 adults from a community sample, plus 46 subjects expected to be particularly sensitive to stress, having been exposed during childhood and/or adolescence to traumatizing events such as abuse or potentially lethal illnesses. Subjects were given the Adult Attachment Interview, which provides attachment classifications, and the Trier Social Stress Test (TSST), involving an experimental psychosocial challenge. Subjective responses to the TSST, as well as saliva samples (assayed for cortisol) and blood plasma samples (assayed for ACTH and oxytocin) were collected before, during and after the stress procedure. The stress responses presented specific patterns according to attachment classifications. Subjects with an autonomous attachment classification reported relatively low subjective stress, they presented a moderate response of the hypothalamic-pituitary-adrenal (HPA) axis (ACTH and cortisol), and a high level of oxytocin. Subjects with a dismissing classification reported a moderate subjective stress, they presented an elevated response of the HPA axis, and moderate levels of oxytocin. Subjects with a preoccupied classification presented moderate levels of subjective stress, and of HPA response, and a relatively low level of oxytocin. Finally, subjects with an unresolved classification reported elevated subjective stress; they presented a suppressed HPA response, and moderate levels of oxytocin. These data support the notion that attachment representations may affect stress responses, and suggest a specific role of oxytocin in both the attachment system and the stress system.
Resumo:
Oxytocin (OT) and vasopressin (VP) are two closely related neuropeptides, widely known for their peripheral hormonal effects. Specific receptors have also been found in the brain, where their neuromodulatory actions have meanwhile been described in a large number of regions. Recently, it has become possible to study their endogenous neuropeptide release with the help of OT/VP promoter-driven expression of fluorescent proteins and light-activated ion channels. In this review, I summarize the neuromodulatory effects of OT and VP in different brain regions by grouping these into different behavioral systems, highlighting their concerted, and at times opposite, effects on different aspects of behavior.
Resumo:
Long-term implications of the exposure to traumatizing experiences during childhood or adolescence, such as sexual abuse, or cancer, have been documented, namely the subjects' response to an acute stress in adulthood. Several indicators of the stress response have been considered (e.g. cortisol, heart rate). Oxytocin (OT) response to an acute stress of individuals exposed to trauma has not been documented. Eighty subjects (n=26 women who had experienced episodes of child abuse, n=25 men and women healthy survivors of cancer in childhood or adolescence, and 29 controls) have been submitted to a laboratory session involving an experimental stress challenge, the Trier social stress test. Overall, there was a clear OT response to the psychosocial challenge. Subjects having experienced a childhood/adolescence life-threatening illness had higher mean levels of OT than both abused and control subjects. There was a moderate negative relationship between OT and salivary cortisol. It is suggested that an acute stress stimulates OT secretion, and that the exposure to enduring life-threatening experiences in childhood/adolescence has long-lasting consequences regarding the stress system and connected functions, namely the activation of OT secretion. Better knowledge of such long-term implications is important so that to prevent dysregulations of the stress responses, which have been shown to be associated to the individual's mental health.