896 resultados para Oxidative burst
Resumo:
Iron and oxidative stress have a regulatory interplay. During the oxidative burst, phagocytic cells produce free radicals such as hypochlorous acid (HOCl). Nevertheless, scarce studies evaluated the effect of either iron deficiency anemia (IDA) or anemia of chronic disease (ACD) on phagocyte function in the elderly. The aim of the present study was to determine the oxidative burst, phagocytosis, and nitric oxide ((aEuro cent)NO) and HOCl, reactive species produced by monocytes and neutrophils in elderly with ACD or IDA. Soluble transferrin receptor, serum ferritin, and soluble transferrin receptor/log ferritin (TfR-F) index determined the iron status. The study was constituted of 39 patients aged over 60 (28 women and 11 men) recruited from the Brazilian Public Health System. Oxidative burst fluorescence intensity per neutrophil in IDA group and HOCl generation in both ACD and IDA groups were found to be lower (p < 0.05). The percentages of neutrophils and monocytes expressing phagocytosis in ACD group were found to be higher (p < 0.05). There was an overproduction of (aEuro cent)NO from monocytes, whereas the fundamental generation of HOCl appeared to be lower. Phagocytosis, oxidative burst, and (aEuro cent)NO and HOCl production are involved in iron metabolism regulation in elderly patients with ACD and IDA.
Resumo:
The change in cellular reducing potential, most likely reflecting an oxidative burst, was investigated in arachidonic acid- (AA) stimulated leukocytes. The cells studied included the human leukemia cell lines HL-60 (undifferentiated and differentiated into macrophage-like and polymorphonuclear-like cells), Jurkat and Raji, and thymocytes and macrophages from rat primary cultures. The oxidative burst was assessed by nitroblue tetrazolium reduction. AA increased the oxidative burst until an optimum AA concentration was reached and the burst decreased thereafter. In the leukemia cell lines, optimum concentration ranged from 200 to 400 µM (up to 16-fold), whereas in rat cells it varied from 10 to 20 µM. Initial rates of superoxide generation were high, decreasing steadily and ceasing about 2 h post-treatment. The continuous presence of AA was not needed to stimulate superoxide generation. It seems that the NADPH oxidase system participates in AA-stimulated superoxide production in these cells since the oxidative burst was stimulated by NADPH and inhibited by N-ethylmaleimide, diphenyleneiodonium and superoxide dismutase. Some of the effects of AA on the oxidative burst may be due to its detergent action. There apparently was no contribution of other superoxide-generating systems such as xanthine-xanthine oxidase, cytochromes P-450 and mitochondrial electron transport chain, as assessed by the use of inhibitors. Eicosanoids and nitric oxide also do not seem to interfere with the AA-stimulated oxidative burst since there was no systematic effect of cyclooxygenase, lipoxygenase or nitric oxide synthase inhibitors, but lipid peroxides may play a role, as indicated by the inhibition of nitroblue tetrazolium reduction promoted by tocopherol.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We studied the effects of Amphotericin B (AmB) on Cryptococcus neoformans using different viability methods (CFUs enumeration, XTT assay and propidium iodide permeability). After 1 h of incubation, there were no viable colonies when the cells were exposed to AmB concentrations >= 1 mg/L. In the same conditions, the cells did not become permeable to propidium iodide, a phenomenon that was not observed until 3 h of incubation. When viability was measured in parallel using XTT assay, a result consistent with the CFUs was obtained, although we also observed a paradoxical effect in which at high AmB concentrations, a higher XTT reduction was measured than at intermediate AmB concentrations. This paradoxical effect was not observed after 3 h of incubation with AmB, and lack of XTT reduction was observed at AmB concentrations higher than 1 mg/L. When stained with dihydrofluorescein, AmB induced a strong intracellular oxidative burst. Consistent with oxidative damage, AmB induced protein carbonylation. Our results indicate that in C. neoformans, Amphotericin B causes intracellular damage mediated through the production of free radicals before damage on the cell membrane, measured by propidium iodide uptake. (C) 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ten Brazilian medicinal plants used to treat gastritis and ulcers were carefully selected on the basis of ethnopharmacological importance and antiulcerogenic activity previously described. The antioxidant activity of the methanolic extracts was determined in analysis conditions that simulate a real biological activity on inhibition of the oxidative burst induced in neutrophils using Helicobacter pylori as activator, by a luminol-amplified chemiluminescence assay. The extracts, at low concentration (5 g/mL), exhibited a large variation in inhibitory effects of H. pylori-induced oxidative burst ranging from 48% inhibition to inactive, but all extracts, excluding Byrsonima intermedia, had inhibitory activity over 80% at the concentration of 100 g/mL. The total suppressive antioxidant capacity measured as the effective concentration, which represents the extract concentration producing 50% inhibition of the chemiluminescence induced by H. pylori, varies from 27.2 to 56.8 g/mL and was in the following order: Qualea parviflora > Qualea multiflora > Alchornea triplinervia > Qualea grandiflora > Anacardium humile > Davilla elliptica > Mouriri pusa > Byrsonima basiloba > Alchornea glandulosa > Byrsonima intermedia. The main groups of compounds in tested extracts are presented. Differences in the phytochemical profile, quantitatively and qualitatively, of these plants can explain and justify their protective effect on the gastric mucosa caused by the neutrophil-generated ROS that occurs when H. pylori displays its evasion mechanisms. © 2013 Cibele Bonacorsi et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Byrsonima crassa Niedenzu (Malpighiaceae) is used in Brazilian folk medicine for the treatment of diseases related mainly to gastric ulcers. In a previous study, our group described the gastric protective effect of the methanolic extract from the leaves of B. crassa. The present study was carried out to investigate the effects of methanolic extract and its phenolic compounds on the respiratory burst of neutrophils stimulated by H. pylori using a luminol-based chemiluminescence assay as well as their anti-H. pylori activity. The suppressive activity on oxidative burst of H. pylori-stimulated neutrophils was in the order of methyl gallate > (+)-catechin > methanol extract > quercetin 3-O-alpha-L-arabinopyranoside > quercetin 3-O-beta-D-galactopyranoside > amentoflavone. Methyl gallate, compound that induced the highest suppressive activity with IC50 value of 3.4 mu g/mL, did not show anti-H. pylori activity. B. crassa could be considered as a potential source of natural antioxidant in gastric ulcers by attenuating the effects on the damage to gastric mucosa caused by neutrophil generated reactive oxygen species, even when H. pylori displays its evasion mechanisms.
Resumo:
Caenorhabditis elegans has recently been developed as a model system to study both pathogen virulence mechanisms and host defense responses. We have shown that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important Gram-positive, noscomial pathogen, Enterococcus faecalis. We have also shown evidence of oxidative stress and upregulation of stress response after exposure to the pathogen. As in mammalian systems, this work shows that production of ROS for innate immune functions occurs via an NADPH oxidase. Specifically, reducing expression of a dual oxidase, Ce-duox1/BLI-3 causes a decrease in ROS production in response to E. faecalis. We also present evidence that reduction of expression of Ce-duox1/BLI-3 increases susceptibility to this pathogen, specifically when expression is reduced in the intestine and the hypodermis. This dual oxidase has previously been localized to the hypodermis, but we show that it is additionally localized to the intestine of C. elegans. To further demonstrate the protective effects of the pathogen-induced ROS production, we demonstrate that antioxidants that scavenge ROS, increase the sensitivity of the nematode to the infection, in stark contrast to their longevity-promoting effects under non-pathogenic conditions. In conclusion, we postulate that the generation of ROS by NADPH oxidases in the barrier epithelium is an ancient, highly conserved innate immune defense mechanism.^
Resumo:
The Pto gene encodes a serine/threonine kinase that confers resistance in tomato to Pseudomonas syringae pv. tomato strains that express the avirulence gene avrPto. Partial characterization of the Pto signal transduction pathway and the availability of transgenic tomato lines (± Pto) make this an ideal system for exploring the molecular basis of disease resistance. In this paper, we test two transgenic tomato cell suspension cultures (±Pto) for production of H2O2 following independent challenge with two strains of P. syringae pv. tomato (±avrPto). Only when Pto and avrPto are present in the corresponding organisms are two distinct phases of the oxidative burst seen, a rapid first burst followed by a slower and more prolonged second burst. In the remaining three plant–pathogen interactions, we observe either no burst or only a first burst, indicating that the second burst is correlated with disease resistance. Further support for this observation comes from the finding that both resistant and susceptible tomato lines produce the critical second oxidative burst when challenged with P. syringae pv. tabaci, a nonhost pathogen that elicits a hypersensitive response on both tomato lines. The Pto kinase is not required, however, for the oxidative burst initiated by non-specific elicitors such as oligogalacturonides or osmotic stress. A model describing a possible role for the Pto kinase in the overall scheme of oxidative burst signaling is proposed.
Resumo:
Treatment of soybean (Glycine max L. cv Williams 82) cell-suspension cultures with Pseudomonas syringae pv glycinea (Psg) harboring an avirulence gene (avrA) or with yeast elicitor resulted in an oxidative burst characterized by the accumulation of H2O2. This burst, and the resultant induction of glutathione S-transferase transcripts, occurred more rapidly and was more prolonged if cells were simultaneously treated with serine protease inhibitors such as phenylmethylsulfonyl fluoride (PMSF) or diisopropylfluorophosphate. PMSF and diisopropylfluorophosphate potentiate a large oxidative burst in cells exposed to Psg harboring the avrC avirulence gene, which is not recognized by the soybean cultivar used in this study. The potentiated burst was inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase, and by the protein kinase inhibitor K252a. PMSF treatment of elicited cells or cells exposed to Psg:avrA caused a large increase in the accumulation of the isoflavonoid phytoalexin glyceollin; however, this was not associated with increased levels of transcripts encoding key phytoalexin biosynthetic enzymes. Glyceollin accumulation was inhibited by diphenylene iodonium; however, the oxidative burst in cells treated with Psg:avrC and PMSF was not followed by phytoalexin accumulation. We conclude that active oxygen species from the oxidative burst are necessary but not sufficient for inducing isoflavonoid phytoalexin accumulation in soybean cells.
Resumo:
Plants that have been wounded by insects or other herbivores may be more susceptible to infection by adventitious microbes. Wound-induced signal molecules, which serve to induce responses in the plant that retard further feeding, might also act to prepare a plant for possible pathogen attack. We have examined the effect of a wound-generated systemic messenger (systemin) on a pathogen-stimulated defense-response marker, the oxidative burst. We observed that neither systemin nor its inactive analog (A-17) was able to directly induce H2O2 biosynthesis in suspension-cultured tomato (Lycopersicon esculentum L.) cells, regardless of the duration of exposure of the cells to the two peptides. Similarly, neither systemin nor A-17 was capable of modifying an oligogalacturonide-elicited oxidative burst, as long as elicitor addition occurred within minutes of treatment with systemin or A-17. In contrast, preexposure of the cell cultures to systemin (but not to A-17) led to a time-dependent enhancement of the oligogalacturonide-elicited oxidative burst. By 12 h of exposure, the H2O2 biosynthetic capacity of systemin-treated cells exceeded that of the control cells by a factor of 16 ± 2. A similar up-regulation by systemin of a mechanically stimulated oxidative burst was also observed. Because the systemin-induced augmentation in oxidant synthesis is quantitatively prevented by coincubation with 2 μm cycloheximide, and because the oxidative burst of oligogalacturonic acid-elicited control cells (no systemin exposure) is unaffected by preincubation with cycloheximide, we conclude that systemin enhancement of the tomato-cell oxidative burst requires protein synthesis.
Resumo:
Cultured cells of rose (Rosa damascena) treated with an elicitor derived from Phytophthora spp. and suspension-cultured cells of French bean (Phaseolus vulgaris) treated with an elicitor derived from the cell walls of Colletotrichum lindemuthianum both produced H2O2. It has been hypothesized that in rose cells H2O2 is produced by a plasma membrane NAD(P)H oxidase (superoxide synthase), whereas in bean cells H2O2 is derived directly from cell wall peroxidases following extracellular alkalinization and the appearance of a reductant. In the rose/Phytophthora spp. system treated with N,N-diethyldithiocarbamate, superoxide was detected by a N,N′-dimethyl-9,9′-biacridium dinitrate-dependent chemiluminescence; in contrast, in the bean/C. lindemuthianum system, no superoxide was detected, with or without N,N-diethyldithiocarbamate. When rose cells were washed free of medium (containing cell wall peroxidase) and then treated with Phytophthora spp. elicitor, they accumulated a higher maximum concentration of H2O2 than when treated without the washing procedure. In contrast, a washing treatment reduced the H2O2 accumulated by French bean cells treated with C. lindemuthianum elicitor. Rose cells produced reductant capable of stimulating horseradish (Armoracia lapathifolia) peroxidase to form H2O2 but did not have a peroxidase capable of forming H2O2 in the presence of reductant. Rose and French bean cells thus appear to be responding by different mechanisms to generate the oxidative burst.