992 resultados para Overlay Networks
Resumo:
Overlay networks have emerged as a powerful and highly flexible method for delivering content. We study how to optimize throughput of large, multipoint transfers across richly connected overlay networks, focusing on the question of what to put in each transmitted packet. We first make the case for transmitting encoded content in this scenario, arguing for the digital fountain approach which enables end-hosts to efficiently restitute the original content of size n from a subset of any n symbols from a large universe of encoded symbols. Such an approach affords reliability and a substantial degree of application-level flexibility, as it seamlessly tolerates packet loss, connection migration, and parallel transfers. However, since the sets of symbols acquired by peers are likely to overlap substantially, care must be taken to enable them to collaborate effectively. We provide a collection of useful algorithmic tools for efficient estimation, summarization, and approximate reconciliation of sets of symbols between pairs of collaborating peers, all of which keep messaging complexity and computation to a minimum. Through simulations and experiments on a prototype implementation, we demonstrate the performance benefits of our informed content delivery mechanisms and how they complement existing overlay network architectures.
Resumo:
In a typical overlay network for routing or content sharing, each node must select a fixed number of immediate overlay neighbors for routing traffic or content queries. A selfish node entering such a network would select neighbors so as to minimize the weighted sum of expected access costs to all its destinations. Previous work on selfish neighbor selection has built intuition with simple models where edges are undirected, access costs are modeled by hop-counts, and nodes have potentially unbounded degrees. However, in practice, important constraints not captured by these models lead to richer games with substantively and fundamentally different outcomes. Our work models neighbor selection as a game involving directed links, constraints on the number of allowed neighbors, and costs reflecting both network latency and node preference. We express a node's "best response" wiring strategy as a k-median problem on asymmetric distance, and use this formulation to obtain pure Nash equilibria. We experimentally examine the properties of such stable wirings on synthetic topologies, as well as on real topologies and maps constructed from PlanetLab and AS-level Internet measurements. Our results indicate that selfish nodes can reap substantial performance benefits when connecting to overlay networks composed of non-selfish nodes. On the other hand, in overlays that are dominated by selfish nodes, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naive wiring strategies.
Resumo:
Gossip protocols have been analyzed as a feasible solution for data dissemination on peer-to-peer networks. In this thesis, a new data dissemination protocol is proposed and compared with other known gossip mechanisms. Performance evaluation is based on simulation.
Resumo:
Greedy routing can be used in mobile ad-hoc networks as geographic routing protocol. This paper proposes to use greedy routing also in overlay networks by positioning overlay nodes into a multi-dimensional Euclidean space. Greedy routing can only be applied when a routing decision makes progress towards the final destination. Our proposed overlay network is built such that there will be always progress at each forwarding node. This is achieved by constructing at each node a so-called nearest neighbor convex set (NNCS). NNCSs can be used for various applications such as multicast routing, service discovery and Quality-of-Service routing. NNCS has been compared with Pastry, another topology-aware overlay network. NNCS has superior relative path stretches indicating the optimality of a path.
Resumo:
Overlay networks have been used for adding and enhancing functionality to the end-users without requiring modifications in the Internet core mechanisms. Overlay networks have been used for a variety of popular applications including routing, file sharing, content distribution, and server deployment. Previous work has focused on devising practical neighbor selection heuristics under the assumption that users conform to a specific wiring protocol. This is not a valid assumption in highly decentralized systems like overlay networks. Overlay users may act selfishly and deviate from the default wiring protocols by utilizing knowledge they have about the network when selecting neighbors to improve the performance they receive from the overlay. This thesis goes against the conventional thinking that overlay users conform to a specific protocol. The contributions of this thesis are threefold. It provides a systematic evaluation of the design space of selfish neighbor selection strategies in real overlays, evaluates the performance of overlay networks that consist of users that select their neighbors selfishly, and examines the implications of selfish neighbor and server selection to overlay protocol design and service provisioning respectively. This thesis develops a game-theoretic framework that provides a unified approach to modeling Selfish Neighbor Selection (SNS) wiring procedures on behalf of selfish users. The model is general, and takes into consideration costs reflecting network latency and user preference profiles, the inherent directionality in overlay maintenance protocols, and connectivity constraints imposed on the system designer. Within this framework the notion of user’s "best response" wiring strategy is formalized as a k-median problem on asymmetric distance and is used to obtain overlay structures in which no node can re-wire to improve the performance it receives from the overlay. Evaluation results presented in this thesis indicate that selfish users can reap substantial performance benefits when connecting to overlay networks composed of non-selfish users. In addition, in overlays that are dominated by selfish users, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naïve wiring strategies. To capitalize on the performance advantages of optimal neighbor selection strategies and the emergent global wirings that result, this thesis presents EGOIST: an SNS-inspired overlay network creation and maintenance routing system. Through an extensive measurement study on the deployed prototype, results presented in this thesis show that EGOIST’s neighbor selection primitives outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, these results demonstrate that EGOIST is competitive with an optimal but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overheads. This thesis also studies selfish neighbor selection strategies for swarming applications. The main focus is on n-way broadcast applications where each of n overlay user wants to push its own distinct file to all other destinations as well as download their respective data files. Results presented in this thesis demonstrate that the performance of our swarming protocol for n-way broadcast on top of overlays of selfish users is far superior than the performance on top of existing overlays. In the context of service provisioning, this thesis examines the use of distributed approaches that enable a provider to determine the number and location of servers for optimal delivery of content or services to its selfish end-users. To leverage recent advances in virtualization technologies, this thesis develops and evaluates a distributed protocol to migrate servers based on end-users demand and only on local topological knowledge. Results under a range of network topologies and workloads suggest that the performance of the distributed deployment is comparable to that of the optimal but unscalable centralized deployment.
Resumo:
Overlay networks have become popular in recent times for content distribution and end-system multicasting of media streams. In the latter case, the motivation is based on the lack of widespread deployment of IP multicast and the ability to perform end-host processing. However, constructing routes between various end-hosts, so that data can be streamed from content publishers to many thousands of subscribers, each having their own QoS constraints, is still a challenging problem. First, any routes between end-hosts using trees built on top of overlay networks can increase stress on the underlying physical network, due to multiple instances of the same data traversing a given physical link. Second, because overlay routes between end-hosts may traverse physical network links more than once, they increase the end-to-end latency compared to IP-level routing. Third, algorithms for constructing efficient, large-scale trees that reduce link stress and latency are typically more complex. This paper therefore compares various methods to construct multicast trees between end-systems, that vary in terms of implementation costs and their ability to support per-subscriber QoS constraints. We describe several algorithms that make trade-offs between algorithmic complexity, physical link stress and latency. While no algorithm is best in all three cases we show how it is possible to efficiently build trees for several thousand subscribers with latencies within a factor of two of the optimal, and link stresses comparable to, or better than, existing technologies.
Resumo:
Uma das áreas de investigação em Telecomunicações de interesse crescente prende-se com os futuros sistemas de comunicações móveis de 4a geração e além destes. Nos últimos anos tem sido desenvolvido o conceito de redes comunitárias, no qual os utilizadores se agregam de acordo com interesses comuns. Estes conceitos têm sido explorados de uma forma horizontal em diferentes camadas da comunicação, desde as redes comunitárias de comunicação (Seattle Wireless ou Personal Telco, p.ex.) até às redes de interesses peer-to-peer. No entanto, estas redes são usualmente vistas como redes de overlay, ou simplesmente redes de associação livre. Na prática, a noção de uma rede auto-organizada, completamente orientada ao serviço/comunidade, integralmente suportada em termos de arquitetura, não existe. Assim este trabalho apresenta uma realização original nesta área de criação de redes comunitárias, com uma arquitetura subjacente orientada a serviço, e que suporta integralmente múltiplas redes comunitárias no mesmo dispositivo, com todas as características de segurança, confiança e disponibilização de serviço necessárias neste tipo de cenários (um nó pode pertencer simultaneamente a mais do que uma rede comunitária). Devido à sua importância para os sistemas de redes comunitárias, foi dado particular atenção a aspetos de gestão de recursos e controlo de acessos. Ambos realizados de uma forma descentralizada e considerando mecanismos dotados de grande escalabilidade. Para isso, é apresentada uma linguagem de políticas que suporta a criação de comunidades virtuais. Esta linguagem não é apenas utilizada para o mapeamento da estrutura social dos membros da comunidade, como para, gerir dispositivos, recursos e serviços detidos pelos membros, de uma forma controlada e distribuída.
Resumo:
Nowadays, communication environments are already characterized by a myriad of competing and complementary technologies that aim to provide an ubiquitous connectivity service. Next Generation Networks need to hide this heterogeneity by providing a new abstraction level, while simultaneously be aware of the underlying technologies to deliver richer service experiences to the end-user. Moreover, the increasing interest for group-based multimedia services followed by their ever growing resource demands and network dynamics, has been boosting the research towards more scalable and exible network control approaches. The work developed in this Thesis enables such abstraction and exploits the prevailing heterogeneity in favor of a context-aware network management and adaptation. In this scope, we introduce a novel hierarchical control framework with self-management capabilities that enables the concept of Abstract Multiparty Trees (AMTs) to ease the control of multiparty content distribution throughout heterogeneous networks. A thorough evaluation of the proposed multiparty transport control framework was performed in the scope of this Thesis, assessing its bene ts in terms of network selection, delivery tree recon guration and resource savings. Moreover, we developed an analytical study to highlight the scalability of the AMT concept as well as its exibility in large scale networks and group sizes. To prove the feasibility and easy deployment characteristic of the proposed control framework, we implemented a proof-of-concept demonstrator that comprehends the main control procedures conceptually introduced. Its outcomes highlight a good performance of the multiparty content distribution tree control, including its local and global recon guration. In order to endow the AMT concept with the ability to guarantee the best service experience by the end-user, we integrate in the control framework two additional QoE enhancement approaches. The rst employs the concept of Network Coding to improve the robustness of the multiparty content delivery, aiming at mitigating the impact of possible packet losses in the end-user service perception. The second approach relies on a machine learning scheme to autonomously determine at each node the expected QoE towards a certain destination. This knowledge is then used by di erent QoE-aware network management schemes that, jointly, maximize the overall users' QoE. The performance and scalability of the control procedures developed, aided by the context and QoE-aware mechanisms, show the advantages of the AMT concept and the proposed hierarchical control strategy for the multiparty content distribution with enhanced service experience. Moreover we also prove the feasibility of the solution in a practical environment, and provide future research directions that bene t the evolved control framework and make it commercially feasible.