998 resultados para Overlay Networks
Resumo:
Gossip protocols have been analyzed as a feasible solution for data dissemination on peer-to-peer networks. In this thesis, a new data dissemination protocol is proposed and compared with other known gossip mechanisms. Performance evaluation is based on simulation.
Resumo:
Greedy routing can be used in mobile ad-hoc networks as geographic routing protocol. This paper proposes to use greedy routing also in overlay networks by positioning overlay nodes into a multi-dimensional Euclidean space. Greedy routing can only be applied when a routing decision makes progress towards the final destination. Our proposed overlay network is built such that there will be always progress at each forwarding node. This is achieved by constructing at each node a so-called nearest neighbor convex set (NNCS). NNCSs can be used for various applications such as multicast routing, service discovery and Quality-of-Service routing. NNCS has been compared with Pastry, another topology-aware overlay network. NNCS has superior relative path stretches indicating the optimality of a path.
Resumo:
There are some approaches that take advantage of unused computational resources in the Internet nodes - users´ machines. In the last years , the peer-to-peer networks (P2P) have gaining a momentum mainly due to its support for scalability and fault tolerance. However, current P2P architectures present some problems such as nodes overhead due to messages routing, a great amount of nodes reconfigurations when the network topology changes, routing traffic inside a specific network even when the traffic is not directed to a machine of this network, and the lack of a proximity relationship among the P2P nodes and the proximity of these nodes in the IP network. Although some architectures use the information about the nodes distance in the IP network, they use methods that require dynamic information. In this work we propose a P2P architecture to fix the problems afore mentioned. It is composed of three parts. The first part consists of a basic P2P architecture, called SGrid, which maintains a relationship of nodes in the P2P network with their position in the IP network. Its assigns adjacent key regions to nodes of a same organization. The second part is a protocol called NATal (Routing and NAT application layer) that extends the basic architecture in order to remove from the nodes the responsibility of routing messages. The third part consists of a special kind of node, called LSP (Lightware Super-Peer), which is responsible for maintaining the P2P routing table. In addition, this work also presents a simulator that validates the architecture and a module of the Natal protocol to be used in Linux routers
Resumo:
Gossip protocols have proved to be a viable solution to set-up and manage largescale P2P services or applications in a fully decentralised scenario. The gossip or epidemic communication scheme is heavily based on stochastic behaviors and it is the fundamental idea behind many large-scale P2P protocols. It provides many remarkable features, such as scalability, robustness to failures, emergent load balancing capabilities, fast spreading, and redundancy of information. In some sense, these services or protocols mimic natural system behaviors in order to achieve their goals. The key idea of this work is that the remarkable properties of gossip hold when all the participants follow the rules dictated by the actual protocols. If one or more malicious nodes join the network and start cheating according to some strategy, the result can be catastrophic. In order to study how serious the threat posed by malicious nodes can be and what can be done to prevent attackers from cheating, we focused on a general attack model aimed to defeat a key service in gossip overlay networks (the Peer Sampling Service [JGKvS04]). We also focused on the problem of protecting against forged information exchanged in gossip services. We propose a solution technique for each problem; both techniques are general enough to be applied to distinct service implementations. As gossip protocols, our solutions are based on stochastic behavior and are fully decentralized. In addition, each technique’s behaviour is abstracted by a general primitive function extending the basic gossip scheme; this approach allows the adoptions of our solutions with minimal changes in different scenarios. We provide an extensive experimental evaluation to support the effectiveness of our techniques. Basically, these techniques aim to be building blocks or P2P architecture guidelines in building more resilient and more secure P2P services.
Resumo:
In free viewpoint applications, the images are captured by an array of cameras that acquire a scene of interest from different perspectives. Any intermediate viewpoint not included in the camera array can be virtually synthesized by the decoder, at a quality that depends on the distance between the virtual view and the camera views available at decoder. Hence, it is beneficial for any user to receive camera views that are close to each other for synthesis. This is however not always feasible in bandwidth-limited overlay networks, where every node may ask for different camera views. In this work, we propose an optimized delivery strategy for free viewpoint streaming over overlay networks. We introduce the concept of layered quality-of-experience (QoE), which describes the level of interactivity offered to clients. Based on these levels of QoE, camera views are organized into layered subsets. These subsets are then delivered to clients through a prioritized network coding streaming scheme, which accommodates for the network and clients heterogeneity and effectively exploit the resources of the overlay network. Simulation results show that, in a scenario with limited bandwidth or channel reliability, the proposed method outperforms baseline network coding approaches, where the different levels of QoE are not taken into account in the delivery strategy optimization.
Resumo:
Motivated by the increasing demand and challenges of video streaming in this thesis, we investigate methods by which the quality of the video can be improved. We utilise overlay networks that have been created by implemented relay nodes to produce path diversity, and show through analytical and simulation models for which environments path diversity can improve the packet loss probability. We take the simulation and analytical models further by implementing a real overlay network on top of Planetlab, and show that when the network conditions remain constant the video quality received by the client can be improved. In addition, we show that in the environments where path diversity improves the video quality forward error correction can be used to further enhance the quality. We then investigate the effect of IEEE 802.11e Wireless LAN standard with quality of service enabled on the video quality received by a wireless client. We find that assigning all the video to a single class outperforms a cross class assignment scheme proposed by other researchers. The issue of virtual contention at the access point is also examined. We increase the intelligence of our relay nodes and enable them to cache video, in order to maximise the usefulness of these caches. For this purpose, we introduce a measure, called the PSNR profit, and present an optimal caching method for achieving the maximum PSNR profit at the relay nodes where partitioned video contents are stored and provide an enhanced quality for the client. We also show that the optimised cache the degradation in the video quality received by the client becomes more graceful than the non-optimised system when the network experiences packet loss or is congested.
Resumo:
Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii ) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise.
Resumo:
Video adaptation is an extensively explored content providing technique aimed at appropriately suiting several usage scenarios featured by different network requirements and constraints, user`s terminal and preferences. However, its usage in high-demand video distribution systems, such as CNDs, has been badly approached, ignoring several aspects of optimization of network use. To address such deficiencies, this paper presents an approach for implementing the adaptation service by exploring the concept of overlay services networks. As a result of demonstrate the benefits of this proposal, it is made a comparison of this proposed adaptation service with other strategies of video adaptation.