954 resultados para Otimização. Cadeia de Markov. Algoritmo genético. Controladornebuloso


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the Markov chain will be the tool used in the modeling and analysis of convergence of the genetic algorithm, both the standard version as for the other versions that allows the genetic algorithm. In addition, we intend to compare the performance of the standard version with the fuzzy version, believing that this version gives the genetic algorithm a great ability to find a global optimum, own the global optimization algorithms. The choice of this algorithm is due to the fact that it has become, over the past thirty yares, one of the more importan tool used to find a solution of de optimization problem. This choice is due to its effectiveness in finding a good quality solution to the problem, considering that the knowledge of a good quality solution becomes acceptable given that there may not be another algorithm able to get the optimal solution for many of these problems. However, this algorithm can be set, taking into account, that it is not only dependent on how the problem is represented as but also some of the operators are defined, to the standard version of this, when the parameters are kept fixed, to their versions with variables parameters. Therefore to achieve good performance with the aforementioned algorithm is necessary that it has an adequate criterion in the choice of its parameters, especially the rate of mutation and crossover rate or even the size of the population. It is important to remember that those implementations in which parameters are kept fixed throughout the execution, the modeling algorithm by Markov chain results in a homogeneous chain and when it allows the variation of parameters during the execution, the Markov chain that models becomes be non - homogeneous. Therefore, in an attempt to improve the algorithm performance, few studies have tried to make the setting of the parameters through strategies that capture the intrinsic characteristics of the problem. These characteristics are extracted from the present state of execution, in order to identify and preserve a pattern related to a solution of good quality and at the same time that standard discarding of low quality. Strategies for feature extraction can either use precise techniques as fuzzy techniques, in the latter case being made through a fuzzy controller. A Markov chain is used for modeling and convergence analysis of the algorithm, both in its standard version as for the other. In order to evaluate the performance of a non-homogeneous algorithm tests will be applied to compare the standard fuzzy algorithm with the genetic algorithm, and the rate of change adjusted by a fuzzy controller. To do so, pick up optimization problems whose number of solutions varies exponentially with the number of variables

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Biometria - IBB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Techniques of optimization known as metaheuristics have achieved success in the resolution of many problems classified as NP-Hard. These methods use non deterministic approaches that reach very good solutions which, however, don t guarantee the determination of the global optimum. Beyond the inherent difficulties related to the complexity that characterizes the optimization problems, the metaheuristics still face the dilemma of xploration/exploitation, which consists of choosing between a greedy search and a wider exploration of the solution space. A way to guide such algorithms during the searching of better solutions is supplying them with more knowledge of the problem through the use of a intelligent agent, able to recognize promising regions and also identify when they should diversify the direction of the search. This way, this work proposes the use of Reinforcement Learning technique - Q-learning Algorithm - as exploration/exploitation strategy for the metaheuristics GRASP (Greedy Randomized Adaptive Search Procedure) and Genetic Algorithm. The GRASP metaheuristic uses Q-learning instead of the traditional greedy-random algorithm in the construction phase. This replacement has the purpose of improving the quality of the initial solutions that are used in the local search phase of the GRASP, and also provides for the metaheuristic an adaptive memory mechanism that allows the reuse of good previous decisions and also avoids the repetition of bad decisions. In the Genetic Algorithm, the Q-learning algorithm was used to generate an initial population of high fitness, and after a determined number of generations, where the rate of diversity of the population is less than a certain limit L, it also was applied to supply one of the parents to be used in the genetic crossover operator. Another significant change in the hybrid genetic algorithm is the proposal of a mutually interactive cooperation process between the genetic operators and the Q-learning algorithm. In this interactive/cooperative process, the Q-learning algorithm receives an additional update in the matrix of Q-values based on the current best solution of the Genetic Algorithm. The computational experiments presented in this thesis compares the results obtained with the implementation of traditional versions of GRASP metaheuristic and Genetic Algorithm, with those obtained using the proposed hybrid methods. Both algorithms had been applied successfully to the symmetrical Traveling Salesman Problem, which was modeled as a Markov decision process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Biometria - IBB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A eficiência espectral em redes baseadas na tecnologia de Rádio Cognitivo (RC) pode ser comprometida caso o rádio seja utilizado por muito tempo para a detecção em vez da transmissão de dados. Por isso, tornam-se necessários esquemas de sensoriamento que tenham o objetivo de obter o máximo possível de utilização do espectro, evitando sensoriamento desnecessário, bem como, obtendo o mínimo de interferência na transmissão do usuário primário decorrente de detecção incorreta de sua transmissão. Neste trabalho, propomos a utilização de Algoritmos Genéticos para realizar a adaptação do período de sensoriamento. O objetivo é obter um período de sensoriamento ótimo para os canais com vistas a maximizar a descoberta de oportunidades no espectro e minimizar o overhead decorrente do sensoriamento. A maioria dos trabalhos relacionados a este assunto considera que o overhead de sensoriamento é fixo, não levando em conta que alguns canais podem ter menor tolerância à interferência que outros. A proposta apresentada neste trabalho pode adaptar-se aos requisitos de tolerância à interferência no canal licenciado por meio da determinação de um período de sensoriamento que otimize as oportunidades para qualquer valor de overhead definido. Nossa proposta consegue obter um ganho de até 90% em relação às técnicas não otimizadas no número de oportunidades encontradas, até 40,9% no ganho de transmissão útil e obteve uma redução no tempo de interferência de 66,83%, bem como resultados similares aos obtidos por uma proposta otimizada presente na literatura, com a vantagem de permitir a adaptação do overhead de sensoriamento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telecommunications play a key role in contemporary society. However, as new technologies are put into the market, it also grows the demanding for new products and services that depend on the offered infrastructure, making the problems of planning telecommunications networks, despite the advances in technology, increasingly larger and complex. However, many of these problems can be formulated as models of combinatorial optimization, and the use of heuristic algorithms can help solving these issues in the planning phase. In this project it was developed two pure metaheuristic implementations Genetic algorithm (GA) and Memetic Algorithm (MA) plus a third hybrid implementation Memetic Algorithm with Vocabulary Building (MA+VB) for a problem in telecommunications that is known in the literature as Problem SONET Ring Assignment Problem or SRAP. The SRAP arises during the planning stage of the physical network and it consists in the selection of connections between a number of locations (customers) in order to meet a series of restrictions on the lowest possible cost. This problem is NP-hard, so efficient exact algorithms (in polynomial complexity ) are not known and may, indeed, even exist

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No âmbito da investigação operacional o problema de empacotamento de contentores é conhecido por procurar definir uma configuração de carga, de forma a otimizar a utilização de um espaço disponível para efetuar o empacotamento. Este problema pode ser apresentado em diversas formas, formas estas que variam em função das características de cada empacotamento. Estas características podem ser: o tipo de carga que se pretende carregar (homogénea ou heterogénea), a possibilidade de a carga poder sofrer rotações em todas as suas dimensões ou apenas em algumas, o lucro que está associado a cada caixa carregada ou restrições inerentes ao contentor como por exemplo dimensões. O interesse pelo estudo de problemas de empacotamento de contentores tem vindo a receber cada vez mais ênfase por várias razões, uma delas é o interesse financeiro dado que o transporte é uma prática que representa custos, sendo importante diminuir estes custos aproveitando o volume do contentor da melhor forma. Outra preocupação que motiva o estudo deste problema prende-se com fatores ambientes, onde se procura racionalizar os recursos naturais estando esta também ligada a questões financeiras. Na literatura podem ser encontradas varias propostas para solucionar este problema, cada uma destas dirigidas a uma variante do problema, estas propostas podem ser determinísticas ou não determinísticas onde utilizam heurísticas ou metaheurísticas. O estudo realizado nesta dissertação descreve algumas destas propostas, nomeadamente as metaheurísticas que são utilizadas na resolução deste problema. O trabalho aqui apresentado traz também uma nova metaheurísticas, mais precisamente um algoritmo genético que terá como objetivo, apresentar uma configuração de carga para um problema de empacotamento de um contentor. O algoritmo genético tem como objetivo a resolução do seguinte problema: empacotar várias caixas retangulares com diversos tamanhos num contentor. Este problema é conhecido como Bin-Packing. A novidade que este algoritmo genético vai introduzir nas diversas soluções apresentadas até à data, é uma nova forma de criar padrões iniciais, ou seja, é utilizada a heurística HSSI (Heurística de Suavização de Superfícies Irregulares) que tem como objetivo criar uma população inicial de forma a otimizar o algoritmo genético. A heurística HSSI tenta resolver problemas de empacotamento simulando, o comportamento da maioria das pessoas ao fazer este processo na vida real, contudo, tem um campo de busca reduzido entre as soluções possíveis e será então utilizado um algoritmo genético para ampliar este campo de busca e explorar novas soluções. No final pretende-se obter um software onde será possível configurar um dado problema de empacotamento de um contentor e obter, a solução do mesmo através do algoritmo genético. Assim sendo, o estudo realizado tem como principal objetivo contribuir com pesquisas e conclusões, sobre este problema e trazer uma nova proposta de solução para o problema de empacotamento de contentores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho foi verificar se as ocorrências de dias secos e chuvosos são condicionalmente dependentes da seqüência dos três dias secos e chuvosos anteriores, numa zona pluviometricamente homogênea, por meio da cadeia não-homogênea de Markov de terceira ordem. Os resultados mostraram que as probabilidades diárias de transição podem ser adequadamente estimadas, com base em dados agregados bimestralmente, seguidas de interpolação por meio de funções sinusoidais. Além disso, evidenciou-se que, naquela zona, as ocorrências diárias de chuva são condicionalmente dependentes da seqüência de dias secos e chuvosos nos três dias anteriores. A cadeia não-homogênea de Markov de terceira ordem é um importante instrumento para a análise da dependência entre as seqüências de dias secos e chuvosos em determinadas regiões.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic algorithm is an optimization technique based on Darwin evolution theory. In last years its application in chemistry is increasing significantly due the special characteristics for optimization of complex systems. The basic principles and some further modifications implemented to improve its performance are presented, as well as a historical development. A numerical example of a function optimization is also shown to demonstrate how the algorithm works in an optimization process. Finally several chemistry applications realized until now is commented to serve as parameter to future applications in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os objetivos deste trabalho foram desenvolver e testar um algoritmo genético (AG) para a solução de problemas de gerenciamento florestal com restrições de integridade. O AG foi testado em quatro problemas, contendo entre 93 e 423 variáveis de decisão, sujeitos às restrições de singularidade, produção mínima e produção máxima, periodicamente. Todos os problemas tiveram como objetivo a maximização do valor presente líquido. O AG foi codificado em ambiente delphi 5.0 e os testes foram realizados em um microcomputador AMD K6II 500 MHZ, com memória RAM de 64 MB e disco rígido de 15GB. O desempenho do AG foi avaliado de acordo com as medidas de eficácia e eficiência. Os valores ou categorias dos parâmetros do AG foram testados e comparados quanto aos seus efeitos na eficácia do algoritmo. A seleção da melhor configuração de parâmetros foi feita com o teste L&O, a 1% de probabilidade, e as análises foram realizadas através de estatísticas descritivas. A melhor configuração de parâmetros propiciou ao AG eficácia média de 94,28%, valor mínimo de 90,01%, valor máximo de 98,48%, com coeficiente de variação de 2,08% do ótimo matemático, obtido pelo algoritmo exato branch and bound. Para o problema de maior porte, a eficiência do AG foi cinco vezes superior à eficiência do algoritmo exato branch and bound. O AG apresentou-se como uma abordagem bastante atrativa para solução de importantes problemas de gerenciamento florestal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Administración con Especialidad en Sistemas) U.A.N.L.