947 resultados para Other Animal Sciences
Resumo:
By the distribution of a questionnaire between all Swiss cattle practitioners it was possible to investigate abortions and other animal health problems related to Bluetongue vaccination 2009. The questionnaire helped to obtain plausibility and timely relation of the reported disorders. 58 abortions in cattle and different herd health problems could be examined. Because there is no possibility to show that a vaccination itself leads to an abortion the results of proven causes of abortions prior and after Bluetongue vaccination were compared regarding their diagnosis. Due to the fact that diagnosis and solving rate of abortions did not differ before and after vaccination, the vaccination itself cannot be responsible for the abortions. Evaluation of different herd health problems showed that Bluetongue vaccination was not responsible for these disorders which often existed already prior to vaccination. Herd health problems generally have multifactorial causes what makes it difficult to asses the effect of Bluetongue vaccination in some cases.
Resumo:
Cover-title.
Resumo:
Mode of access: Internet.
Resumo:
The ability to appropriately interact with the environment is crucial to an organism’s survival. The establishment of functional sensory systems, such as the bristles and eyes in Drosophila, is a critical event during the development of the organism. The transcription factor D Pax2 is involved in the differentiation of the shaft and glial cells in the developing bristle (Kavaler et al., Dev, 126:2261-2272, 1999) and of the cone and primary pigment cells in the developing eye (Fu and Noll, Genes Dev, 11:389-405, 1997). How D-Pax2 contributes to distinct differentiative pathways in different cell types is not known. Recent work by Anna Czechowski and Katherine Harmon (personal communication) identified a mutation in the D-Pax2 gene that introduced a stop codon at the end of exon 9, effectively truncating the protein. This mutation affects bristle, but not eye, development. We thus suspected regions after exon 9 are required for D-Pax2 function only in the bristles and may also be associated with alternative splicing of the D Pax2 transcript. We plan to assess the role of the carboxy terminal region of the protein by establishing transgenic lines bearing rescue constructs of D-Pax2 with either the complete coding sequence or with deletions of specific exons. To date, we have generated the first rescue construct bearing the complete coding region of the gene driven by a 3 KB upstream regulatory region of D-Pax2 and are currently generating transgenic fly lines with this construct.
Resumo:
During ethanol production, starch is the primary nutrient fermented and the remaining byproducts are excellent sources of fiber and protein. In addition, inclusion of byproducts in finishing diets may reduce the incidence of acidosis. As a result, roughage level and quality could potentially be reduced in finishing diets containing byproducts. Three experiments were conducted to examine the effects of roughage and wet corn gluten feed (WCGF) in finishing cattle diets containing corn distillers grains plus solubles. Cattle fed finishing diets containing wet distillers grains plus solubles (WDGS) with no roughage had decreased DMI and ADG compared to cattle fed roughage. Within roughage level, ADG was similar for cattle fed alfalfa hay, corn silage or corn stalks when included on an equal NDF basis. Apparent total tract digestibility of OM, NDF, and CP linearly decreased and ruminal pH variables increased linearly due to increasing roughage levels. Roughage sources can be exchanged on an equal NDF basis in beef finishing diets containing 30% WDGS (DM basis). In finishing diets containing modified distillers grains plus solubles (MDGS), DMI linearly increased due to increasing roughage levels but ADG responded quadratically and was lowest for cattle fed diets without roughage. There was also a quadratic response for DMI and ADG due to WCGF inclusion level. Gain:feed decreased linearly with increasing roughage and WCGF inclusion levels. Feeding 15% WCGF resulted in similar cattle performance and carcass traits to cattle fed no WCGF in diets containing 30% MDGS, but cattle fed diets with 60% total byproduct inclusion made up of 30% WCGF and 30% MDGS had reduced performance (DM basis). Additionally, reducing corn silage inclusion level to 7.5% resulted in similar finishing cattle performance and carcass traits to cattle fed 15% corn silage in diets containing 30% MDGS with or without inclusion of WCGF. Elimination of roughage in diets containing either WDGS or MDGS resulted in negative impacts on finishing cattle performance, ruminal metabolism, and carcass traits.
Resumo:
ABSTRACT: As a secondary sexual trait that can increase reproductive success, ornamentation is believed to be costly for organisms to acquire and possess. This study investigates possible costs of ornamentation on wolf spider foraging by comparing foraging abilities of two male forms that differ in ornamentation upon maturation. The two male forms, found syntopically in a mixed population in Mississippi, USA, resemble two sibling species: Schizocosa ocreata, in which males develop large black brushes on their forelegs upon maturation, and Schizocosa rovneri, in which males lack ornamentation following maturation. Individuals of both forms participated in foraging trials as penultimates (juveniles) and as matures. Analyses were conducted to compare behaviors and determine changes in foraging abilities between male forms (non-ornamented vs. brush-legged) and between age groups (penultimate vs. mature). Most foraging behaviors of the two male forms during immaturity were similar with the exception that brush-legged males attacked more frequently than non-ornamented males. Brush-legged males attacked less, spent more time moving, and improved capture abilities as matures, while non-ornamented males retained similar trends for these behaviors with age. Additionally, while capture abilities improved with age among brush-legged males, killing abilities remained constant. This disparity was due to increased escapes made by captured prey items, possibly due to hindrances caused by brush presence preventing secure holds onto crickets. In summary, differences in foraging exist between brush-legged and non-ornamented males prior to sexual maturation, and the development of/presence of brushes appears to influence adult male foraging efficiency.
Resumo:
ABSTRACT: This thesis report illustrates the applications and potentials of biogenic methane recovery in Nebraska’s agricultural and industrial sectors and as a means for increasing sustainable economic development in the state’s rural communities. As the nation moves toward a new green economy, biogenic methane recovery as a waste management strategy and renewable energy resource presents significant opportunities for Nebraska to be a national and world leader in agricultural and industrial innovation, advanced research and development of renewable energy technology, and generation of new product markets. Nebraska’s agricultural economy provides a distinct advantage to the state for supporting methane recovery operations that provide long-term economic and environmental partnerships among producers, industry, and communities. These opportunities will serve to protect Nebraska’s agricultural producers from volatile energy input markets and as well as creating new markets for Nebraska agricultural products. They will also serve to provide quality education and employment opportunities for Nebraska students and businesses. There are challenges and issues that remain for the state in order to take advantage of its resource potential. There is a need to produce a comprehensive Nebraska biogenic methane potential study and digital mapping system to identify high-potential producers, co-products, and markets. There is also a need to develop a web-based format of consolidated information specific to Nebraska to aid in connecting producers, service providers, educators, and policy-makers.
Resumo:
Dr. Charles Peterson, Herpetologist and Professor of Biological Sciences at Idaho State University. Curator of Ichthyology and Herpetology at the Idaho Museum of Natural History.
Resumo:
Hearing is extremely important for cetaceans because it is their “principal sense” (Weilgart, 2007) thus the harbor porpoise and other marine animals are highly dependent on sound for survival. This is why we should care about the impact of noise on animals like the harbor porpoise. Since sound travels so well in water, an explosion, sonar, boat noise, etc. can affect a very large area and thus many different species of marine mammals. Although military actions such as low frequency sonar have made recent news, noise has been affecting cetaceans, especially beaked whales, since at least 1991 (Weilgart, 2007). This study is an investigation of the possible impacts of artillery detonated on land on harbor porpoise hearing and covers some of the history of Fort Richardson, the legal and historical aspects and history of this type of concern, the science and physics of sound, marine mammal hearing and general biology of the harbor porpoise. Data were collected at the Fort Richardson Army base during June of 2007 by researchers from the University of Connecticut and the University of Rhode Island and will be used to determine the possible impacts that these detonations could have on the harbor porpoise.
Resumo:
The current study describes the composition and activity of the snake community of the Pa-hay-okee wetlands of Everglades National Park. The study was conducted from January 1987 to January 1989. Sixteen species were observed, with Thamnophis sauritus, Thamnophis sirtalis, Nerodia fasciata pictiventris, and Agkistrodon piscivorus representing 90.2% of the total sample. The seasonal distribution and activity of the snakes were closely related to fluctuations in the water table. Most activity occurred in the winter months as snakes migrated west following the drying water edge of Shark River Slough. Seventy percent of all snakes observed during this study were either injured or dead on the road. Over 50% of annual mortality occurred during migration. The impact that road mortality is having on the local snake community cannot be ignored. Management options are provided to minimize loss. A comparison is made to the snake community of the Long Pine Key Region of Everglades National Park.
Resumo:
The reconstruction of extended maxillary and mandibular defects with prefabricated free flaps is a two stage procedure, that allows immediate function with implant supported dentures. The appropriate delay between prefabrication and reconstruction depends on the interfacial strength of the bone–implant surface. The purpose of this animal study was to evaluate the removal torque of unloaded titanium implants in the fibula, the scapula and the iliac crest. Ninety implants with a sandblasted and acid-etched (SLA) surface were tested after healing periods of 3, 6, and 12 weeks, respectively. Removal torque values (RTV) were collected using a computerized counterclockwise torque driver. The bicortical anchored 8 mm implants in the fibula revealed values of 63.73 Ncm, 91.50 Ncm, and 101.83 Ncm at 3, 6, and 12 weeks, respectively. The monocortical anchorage in the iliac crest showed values of 71.40 Ncm, 63.14 Ncm, and 61.59 Ncm with 12 mm implants at the corresponding times. The monocortical anchorage in the scapula demonstrated mean RTV of 62.28 Ncm, 97.63 Ncm, and 99.7 Ncm with 12 mm implants at 3, 6, and 12 weeks, respectively. The study showed an increase of removal torque with increasing healing time. The interfacial strength for bicortical anchored 8 mm implants in the fibula was comparable to monocortical anchored 12 mm implants in the iliac crest and the scapula at the corresponding times. The resistance to shear seemed to be determined by the type of anchorage (monocortical vs. bicortical) and the length of the implant with greater amount of bone–implant interface.
Resumo:
This article presents a two-stage analytical framework that integrates ecological crop (animal) growth and economic frontier production models to analyse the productive efficiency of crop (animal) production systems. The ecological crop (animal) growth model estimates "potential" output levels given the genetic characteristics of crops (animals) and the physical conditions of locations where the crops (animals) are grown (reared). The economic frontier production model estimates "best practice" production levels, taking into account economic, institutional and social factors that cause farm and spatial heterogeneity. In the first stage, both ecological crop growth and economic frontier production models are estimated to calculate three measures of productive efficiency: (1) technical efficiency, as the ratio of actual to "best practice" output levels; (2) agronomic efficiency, as the ratio of actual to "potential" output levels; and (3) agro-economic efficiency, as the ratio of "best practice" to "potential" output levels. Also in the first stage, the economic frontier production model identifies factors that determine technical efficiency. In the second stage, agro-economic efficiency is analysed econometrically in relation to economic, institutional and social factors that cause farm and spatial heterogeneity. The proposed framework has several important advantages in comparison with existing proposals. Firstly, it allows the systematic incorporation of all physical, economic, institutional and social factors that cause farm and spatial heterogeneity in analysing the productive performance of crop and animal production systems. Secondly, the location-specific physical factors are not modelled symmetrically as other economic inputs of production. Thirdly, climate change and technological advancements in crop and animal sciences can be modelled in a "forward-looking" manner. Fourthly, knowledge in agronomy and data from experimental studies can be utilised for socio-economic policy analysis. The proposed framework can be easily applied in empirical studies due to the current availability of ecological crop (animal) growth models, farm or secondary data, and econometric software packages. The article highlights several directions of empirical studies that researchers may pursue in the future.
Resumo:
White-nose syndrome (WNS) is an emerging infectious disease of hibernating bats linked to the death of an estimated 5.7 million or more bats in the northeastern United States and Canada. White-nose syndrome is caused by the cold-loving fungus Pseudogymnoascus destructans (Pd), which invades the skin of the muzzles, ears, and wings of hibernating bats. Previous work has shown that WNS-affected bats arouse to euthermic or near euthermic temperatures during hibernation significantly more frequently than normal and that these too-frequent arousals are tied to severity of infection and death date. We quantified the behavior of bats during these arousal bouts to understand better the causes and consequences of these arousals. We hypothesized that WNS-affected bats would display increased levels of activity (especially grooming) during their arousal bouts from hibernation compared to WNS-unaffected bats. Behavior of both affected and unaffected hibernating bats in captivity was monitored from December 2010 to March 2011 using temperature-sensitive dataloggers attached to the backs of bats and infrared motion-sensitive cameras. The WNS-affected bats exhibited significantly higher rates of grooming, relative to unaffected bats, at the expense of time that would otherwise be spent inactive. Increased self-grooming may be related to the presence of the fungus. Elevated activity levels in affected bats likely increase energetic stress, whereas the loss of rest (inactive periods when aroused from torpor) may jeopardize the ability of a bat to reestablish homeostasis in a number of physiologic systems.
Resumo:
Antimicrobial susceptibility testing was performed on a total of 581 clinical Escherichia coli isolates from diarrhea and edema disease in pigs, from acute mastitis in dairy cattle, from urinary tract infections in dogs and cats, and from septicemia in laying hens collected in Switzerland between 1999 and 2001. Among the 16 antimicrobial agents tested, resistance was most frequent for sulfonamides, tetracycline, and streptomycin. Isolates from swine presented significantly more resistance than those from the other animal species. The distribution of the resistance determinants for sulfonamides, tetracycline, and streptomycin was assessed by hybridization and PCR in resistant isolates. Significant differences in the distribution of resistance determinants for tetracycline (tetA, tetB) and sulfonamides (sulII) were observed between the isolates from swine and those from the other species. Resistance to sulfonamides could not be explained by known resistance mechanisms in more than a quarter of the sulfonamide-resistant and sulfonamide-intermediate isolates from swine, dogs and cats. This finding suggests that one or several new resistance mechanisms for sulfonamides may be widespread among E. coli isolates from these animal species. The integrase gene (intI) from class I integrons was detected in a large proportion of resistant isolates in association with the sulI and aadA genes, thus demonstrating the importance of integrons in the epidemiology of resistance in clinical E. coli isolates from animals.