1000 resultados para Osteoclastic cells
Resumo:
Bone is constantly being molded and shaped by the action of osteoclasts and osteoblasts. A proper equilibrium between both cell types metabolic activities is required to ensure an adequate skeletal tissue structure, and it involves resorption of old bone and formation of new bone tissue. It is reported that treatment with antiepileptic drugs (AEDs) can elicit alterations in skeletal structure, in particular in bone mineral density. Nevertheless, the knowledge regarding the effects of AEDs on bone cells are still scarce. In this context, the aim of this study was to investigate the effects of five different AEDs on human osteoclastic, osteoblastic and co-cultured cells. Osteoclastic cell cultures were established from precursor cells isolated from human peripheral blood and were characterized for tartrate-resistant acid phosphatase (TRAP) activity, number of TRAP+ multinucleated cells, presence of cells with actin rings and expressing vitronectin and calcitonin receptors and apoptosis rate. Also, the involvement of several signaling pathways on the cellular response was addressed. Osteoblastic cell cultures were obtained from femur heads of patients (25-45 years old) undergoing orthopaedic surgery procedures and were then studied for cellular proliferation/viability, ALP activity, histochemical staining of ALP and apoptosis rate. Also the expression of osteoblast-related genes and the involvement of some osteoblastogenesis-related signalling pathways on cellular response were addressed. For co-cultured cells, osteoblastic cells were firstly seeded and cultured. After that, PBMC were added to the osteoblastic cells and co-cultures were evaluated using the same osteoclast and osteoblast parameters mentioned above for the corresponding isolated cell. Cell-cultures were maintained in the absence (control) or in the presence of different AEDs (carbamazepine, gabapentin, lamotrigine, topiramate and valproic acid). All the tested drugs were able to affect osteoclastic and osteoblastic cells development, although with different profiles on their osteoclastogenic and osteoblastogenic modulation properties. Globally, the tendency was to inhibit the process. Furthermore, the signaling pathways involved in the process also seemed to be differently affected by the AEDs, suggesting that the different drugs may affect osteoclastogenesis and/or osteoblastogenesis through different mechanisms. In conclusion, the present study showed that the different AEDs had the ability to directly and indirectly modulate bone cells differentiation, shedding new light towards a better understanding of how these drugs can affect bone tissue.
Resumo:
Bone is constantly being molded and shaped by the action of osteoclasts and osteoblasts. A proper equilibrium between both cell types metabolic activities is required to ensure an adequate skeletal tissue structure, and it involves resorption of old bone and formation of new bone tissue. It is reported that treatment with antiepileptic drugs (AEDs) can elicit alterations in skeletal structure, in particular in bone mineral density. Nevertheless, the knowledge regarding the effects of AEDs on bone cells are still scarce, particularly on osteoclastic behaviour. In this context, the aim of this study was to investigate the effects of five different AEDs on human osteoclastic cells. Osteoclastic cell cultures were established from precursor cells isolated from human peripheral blood, and were maintained in the absence (control) or in the presence of 10-8-10-4 M of different AEDs (valproate, carbamazepine, gabapentin, lamotrigine and topiramate). Cell cultures were characterized throughout a 21-day period for tartrate-resistant acid phosphatase (TRAP) activity, number of TRAP+ multinucleated cells, presence of cells with actin rings and expressing vitronectin and calcitonin receptors, and apoptosis rate. Also, the involvement of several signaling pathways on the cellular response was addressed. All the tested drugs were able to affect osteoclastic cell development, although with different profiles on their osteoclastogenic modulation properties. Globally, the tendency was to inhibit the process. Furthermore, the signaling pathways involved in the process also seemed to be differentially affected by the AEDs, suggesting that the different drugs may affect osteoclastogenesis through different mechanisms. In conclusion, the present study showed that the different AEDs had the ability to negatively modulate the osteoclastogenesis process, shedding new light towards a better understanding of how these drugs can affect bone tissue.
Resumo:
Ameloblastomas and keratocystic odontogenic tumors (KOT) represent odontogenic lesions that, despite their benign nature, are distinguished by a distinct biological behavior, characterized by locally aggressive growth and recurrent episodes. The gnathic bone resorption caused by the growth of these lesions is a key to the expansion of the same, both being mediated by osteoclastic cells like enzymatic activity of various matrix metalloproteinases (MMPs) factor. The expression of stimulatory factors and inhibitors of bone resorption has been correlated with the development of these lesions, with emphasis to some MMPs such as collagenases and gelatinases and tissue inhibitors of metalloproteinases (TIMPs), among others. Based on the premise that stimulatory and inhibitory factors of osteolytic processes can be decisive for the growth rate of intraosseous odontogenic lesions, this experiment evaluated the immunoreactivity of MMP-9, -13 and TIMP-1 protein in the epithelium and mesenchyme of ameloblastoma and the KOT specimens, by a quantitative analysis of the immunoreactivity cells. Statistical analysis was performed using the Mann-Whitney and Wilcoxon tests with a significance level set at 5 %. Immunohistochemical expression of MMP-9, -13 and TIMP-1 was observed in 100% of cases both in the epithelium and in mesenchyme. The immunoreactivity in the epithelium of KOT and ameloblastomas revealed a predominance of score 3 for MMP-9 (p=0.382) and MMP-13 (p=0.069) and no statistically significance for TIMP-1, the latter being significantly higher immunoreactivity in ameloblastomas. In the mesenchyme, there was a higher score immunoreactivity of MMP-13 (p=0.031) in ameloblastomas in relation to KOT, whereas for MMP-9 and TIMP-1 no statistically significant difference (p=0.403 was observed, p=1.000). The calculation of the ratio of scores revealed expression of proteins in general, similarity of the lesions, a significant predominance of equal expression of TIMP-1 and MMP-9 was observed only in the epithelium of ameloblastoma. The marked immunostaining of MMP-9 , MMP-13 and TIMP-1 in epithelium and mesenchyme of the lesion indicate that these proteins involved in ECM remodeling required for tumor progression, however, specific differences in the expression of some of these proteins, are not sufficient to suggest differences in the biological behavior of ameloblastomas and KOTs
Resumo:
Alendronate (ALN), an aminobisphosphonate used in the treatment of osteoporosis, is a potent inhibitor of bone resorption. Its molecular target is still unknown. This study examines the effects of ALN on the activity of osteoclast protein-tyrosine phosphatase (PTP; protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48), called PTPepsilon. Using osteoclast-like cells generated by coculturing mouse bone marrow cells with mouse calvaria osteoblasts, we found by molecular cloning and RNA blot hybridization that PTPepsilon is highly expressed in osteoclastic cells. A purified fusion protein of PTPepsilon expressed in bacteria was inhibited by ALN with an IC50 of 2 microM. Other PTP inhibitors--orthovanadate and phenylarsine oxide (PAO)-inhibited PTPepsilon with IC50 values of 0.3 microM and 18 microM, respectively. ALN and another bisphosphonate, etidronate, also inhibited the activities of other bacterially expressed PTPs such as PTPsigma and CD45 (also called leukocyte common antigen). The PTP inhibitors ALN, orthovanadate, and PAO suppressed in vitro formation of multinucleated osteoclasts from osteoclast precursors and in vitro bone resorption by isolated rat osteoclasts (pit formation) with estimated IC50 values of 10 microM, 3 microM, and 0.05 microM, respectively. These findings suggest that tyrosine phosphatase activity plays an important role in osteoclast formation and function and is a putative molecular target of bisphosphonate action.
Resumo:
Matricellular proteins play a unique role in the skeleton as regulators of bone remodeling, and the matricellular protein osteonectin (SPARC, BM-40) is the most abundant non-collagenous protein in bone In. the absence of osteonectin, mice develop progressive low turnover osteopenia, particularly affecting trabecular bone. Polymorphisms in a regulatory region of the osteonectin gene are associated with bone mass in a subset of idiopathic osteoporosis patients, and these polymorphisms likely regulate osteonectin expression. Thus it is important to determine how osteonectin gene dosage affects skeletal function. Moreover, intermittent administration of parathyroid hormone (PTH) (1-34) is the only anabolic therapy approved for the treatment of osteoporosis, and it is critical to understand how modulators of bone remodeling, such as osteonectin, affect skeletal response to anabolic agents. In this study, 10 week old female wild type, osteonectin-haploinsufficient, and osteonectin-null mice (C57Bl/6 genetic background) were given 80 mu g/kg body weight/day PTH(1-34) for 4 weeks. Osteonectin gene dosage had a profound effect on bone microarchitecture. The connectivity density of trabecular bone in osteonectin-haploinsufficient mice was substantially decreased compared with that of wild type mice, suggesting compromised mechanical properties. Whereas mice of each genotype had a similar osteoblastic response to PTH treatment, the osteoclastic response was accentuated in osteonectin-haploinsufficient and osteonectin-null mice. Eroded surface and osteoclast number were significantly higher in PTH-treated osteonectin-null mice, as was endosteal area. In vitro studies confirmed that PTH induced the formation of more osteoclast-like cells in marrow from osteonectin-null mice compared with wild type. PTH treated osteonectin-null bone marrow cells expressed more RANKL mRNA compared with wild type. However, the ratio of RANKL:OPG mRNA was somewhat lower in PTH treated osteonectin-null cultures. Increased expression of RANKL in response to PTH could contribute to the accentuated osteoclastic response in osteonectin(-/-) mice, but other mechanisms are also likely to be involved. The molecular mechanisms by which PTH elicits bone anabolic vs. bone catabolic effects remain poorly understood. Our results imply that osteonectin levels may play a role in modulating the balance of bone formation and resorption in response to PTH. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The skeleton undergoes continuous turnover throughout life. In women, an increase in bone turnover is pronounced during childhood and puberty and after menopause. Bone turnover can be monitored by measuring biochemical markers of bone resorption and bone formation. Tartrate-resistant acid phosphatase (TRACP) is an enzyme secreted by osteoclasts, macrophages and dendritic cells. The secreted enzyme can be detected from the blood circulation by recently developed immunoassays. In blood circulation, the enzyme exists as two isoforms, TRACP 5a with an intact polypeptide chain and TRACP 5b in which the polypeptide chain consists of two subunits. The 5b form is predominantly secreted by osteoclasts and is thus associated with bone turnover. The secretion of TRACP 5b is not directly related to bone resorption; instead, the levels are shown to be proportional to the number of osteoclasts. Therefore, the combination of TRACP 5b and a marker reflecting bone degradation, such as C-terminal cross-linked telopeptides of type I collagen (CTX), enables a more profound analysis of the changes in bone turnover. In this study, recombinant TRACP 5a-like protein was proteolytically processed into TRACP 5b-like two subunit form. The 5b-like form was more active both as an acid phosphatase and in producing reactive oxygen species, suggesting a possible function for TRACP 5b in osteoclastic bone resorption. Even though both TRACP 5a and 5b were detected in osteoclasts, serum TRACP 5a levels demonstrated no change in response to alendronate treatment of postmenopausal women. However, TRACP 5b levels decreased substantially, demonstrating that alendronate decreases the number of osteoclasts. This was confirmed in human osteoclast cultures, showing that alendronate decreased the number of osteoclats by inducing osteoclast apoptosis, and TRACP 5b was not secreted as an active enzyme from the apoptotic osteoclasts. In peripubertal girls, the highest levels of TRACP 5b and other bone turnover markers were observed at the time of menarche, whereas at the same time the ratio of CTX to TRACP 5b was lowest, indicating the presence of a high number of osteoclasts with decreased resorptive activity. These results support the earlier findings that TRACP 5b is the predominant form of TRACP secreted by osteoclasts. The major source of circulating TRACP 5a remains to be established, but is most likely other cells of the macrophage-monocyte system. The results also suggest that bone turnover can be differentially affected by both osteoclast number and their resorptive activity, and provide further support for the possible clinical use of TRACP 5b as a marker of osteoclast number.
Resumo:
Silica based biomaterials, such as melt-derived bioactive glasses and sol-gel glasses, have been used for a long time in bone healing applications because of their ability to form hydroxyapatite and to stimulate stem cell proliferation and differentiation. In this study, bone marrow derived cells were cultured with bioactive glass and sol-gel silica, and seeded into porous polymer composite scaffolds that were then implanted femorally and subcutaneously in rats to monitor their migration inside host tissue. Bone marrow derived cells were also injected intraperitoneally. Transplanted cells migrated to various tissues inside the host, including the lung, liver spleen, thymus and bone marrow. The method of transplantation affected the time frame of cell migration, with intraperitoneal injection being the fastest and femoral implantation the slowest, but not the target tissues of migration. Transplanted donor cells had a limited lifetime in the host and were later eliminated from all tested tissues. Bioactive glass, however, affected the implanted cells negatively. When it was present in the scaffold no donor cells were found in any of the tested host tissues. Bioactive glass S53P4 was found to support both osteoblastic and osteoclastic phenotype of bone marrow derived cells, but it was resistant to the resorbing effect of osteoclastic bone marrow derived cells, showing that bioactive glass is rather dissolved through physicochemical reactions than resorbed by cells. Fast-dissolving silica sol gel in microparticulate form was found to increase collagen formation by bone marrow derived cells, while slow dissolving silica microparticles enhanced their proliferation, suggesting that the dissolution rate of silica controls the response of bone marrow derived cells.
Resumo:
Periodontal disease (PD) progression involves the selective leukocyte infiltration into periodontium, supposedly mediated by the chemokine/chemokine receptor system. In this study, we investigated the role of chemokine receptor CCR5 in the immunoregulation of experimental PD in C57BL/6 (WT) and CCR5KO mice. Aggregatibacter actinomycetem comitans infection triggered the chemoattraction of distinct CCR5+ leukocyte subpopulations (determined by flow cytometry): CCR5+F4/80+ leukocytes, which co-express CD14, CCR2, TNF-alpha, and IL-1 beta, indicative of activated macrophages; and CCR5+CD4+ cells, which co-express CXCR3, IFN-gamma, and RANKL, indicative of Th1 lymphocytes, therefore comprising pro-osteoclastic and osteoclastogenic cell subsets, respectively. CCR5KO mice presented a lower PD severity (lower inflammation and alveolar bone loss) when compared with the WT strain, since the migration of F4/80+, TNF-alpha+, CD4+, and RANKL+ cells specifically decreased due to the lack of CCR5. Also, ELISA analysis demonstrated that the production of TNF-alpha, IL-1 beta, IL-6, IFN-gamma, and RANKL in periodontal tissues was significantly decreased in the CCR5KO strain. The periodontal bacterial load and antimicrobial patterns were unaltered in CCR5KO mice. Our results demonstrate that the chemokine receptor is involved in the migration of distinct leukocyte subpopulations throughout experimental PD, being a potential target for therapeutic intervention in PD.
Resumo:
Nitensidine A is a guanidine alkaloid isolated from Pterogyne nitens, a common plant in South America. To gain insight into the biological activity of P. nitens-produced compounds, we examined herein their biological effects on osteoclasts, multinucleated giant cells that regulate bone metabolism by resorbing bone. Among four guanidine alkaloids (i.e., galegine, nitensidine A, pterogynidine, and pterogynine), nitensidine A and pterogynine exhibited anti-osteoclastic effects at 10 μM by reducing the number of osteoclasts on the culture plate whereas galegine and pterogynidine did not. The anti-osteoclastic activities of nitensidine A and pterogynine were exerted in a concentration-dependent manner, whereas nitensidine A exhibited an approximate threefold stronger effect than pterogynine (IC50 values: nitensidine A, 0.93 ± 0.024 μM; pterogynine, 2.7 ± 0.40 μM). In the present study, the anti-osteoclastic effects of two synthetic nitensidine A derivatives (nitensidine AT and AU) were also examined to gain insight into the structural features of nitensidine A that exert an anti-osteoclastic effect. The anti-osteoclastic effect of nitensidine A was greatly reduced by substituting the imino nitrogen atom in nitensidine A with sulfur or oxygen. According to the differences in chemical structures and anti-osteoclastic effects of the four guanidine alkaloids and the two synthetic nitensidine A derivatives, it is suggested that the number, binding site, and polymerization degree of isoprenyl moiety in the guanidine alkaloids and the imino nitrogen atom cooperatively contribute to their anti-osteoclastic effects. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Characterized for the first time in erythrocytes, phosphatidylinositol phosphate kinases (PIP kinases) belong to a family of enzymes that generate various lipid messengers and participate in several cellular processes, including gene expression regulation. Recently, the PIPKIIα gene was found to be differentially expressed in reticulocytes from two siblings with hemoglobin H disease, suggesting a possible relationship between PIPKIIα and the production of globins. Here, we investigated PIPKIIα gene and protein expression and protein localization in hematopoietic-derived cells during their differentiation, and the effects of PIPKIIα silencing on K562 cells. PIPKIIα silencing resulted in an increase in α and γ globins and a decrease in the proliferation of K562 cells without affecting cell cycle progression and apoptosis. In conclusion, using a cell line model, we showed that PIPKIIα is widely expressed in hematopoietic-derived cells, is localized in their cytoplasm and nucleus, and is upregulated during erythroid differentiation. We also showed that PIPKIIα silencing can induce α and γ globin expression and decrease cell proliferation in K562 cells.
Resumo:
Protocols for the generation of dendritic cells (DCs) using serum as a supplementation of culture media leads to reactions due to animal proteins and disease transmissions. Several types of serum-free media (SFM), based on good manufacture practices (GMP), have recently been used and seem to be a viable option. The aim of this study was to evaluate the results of the differentiation, maturation, and function of DCs from Acute Myeloid Leukemia patients (AML), generated in SFM and medium supplemented with autologous serum (AS). DCs were analyzed by phenotype characteristics, viability, and functionality. The results showed the possibility of generating viable DCs in all the conditions tested. In patients, the X-VIVO 15 medium was more efficient than the other media tested in the generation of DCs producing IL-12p70 (p=0.05). Moreover, the presence of AS led to a significant increase of IL-10 by DCs as compared with CellGro (p=0.05) and X-Vivo15 (p=0.05) media, both in patients and donors. We concluded that SFM was efficient in the production of DCs for immunotherapy in AML patients. However, the use of AS appears to interfere with the functional capacity of the generated DCs.
Resumo:
This study aimed at evaluating the functional activation and activating receptors expression on resting, short- and long-term NK and NK-like T cells from blood of ovarian neoplasia patients. Blood from patients with adnexal benign alterations (n = 10) and ovarian cancer (grade I-IV n = 14) were collected after signed consent. Effector cells activation was evaluated by the expression of the CD107a molecule. Short-term culture was conducted overnight with IL-2 and long-term culture for 21 days, by a method designed to expand CD56(+) lymphocytes. Short-term culture significantly increased NK cells activation compared to resting NK cells (p<0.05), however, the long-term procedure supported an even higher increase (p<0.001). Resting NK-like T cells showed poor activation, which was not altered by the culture procedures. The long-term culture effectively increased the expression of the activating receptors on NK and NK-like T cells, either by increasing the number of cells expressing a given receptor and/or by up-regulating their expression intensity. As a conclusion, the long-term culture system employed, resulted in a high number of functional NK cells. The culture system was particularly efficient on the up-regulation of NKp30 and DNAM-1 receptors on NK cells.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that occur naturally in complex mixtures. Many of the adverse health effects of PAHs including cancer are linked to the activation of intracellular stress response signaling. This study has investigated intracellular MAPK signaling in response to PAHs in extracts from urban air collected in Stockholm, Sweden and Limeira, Brazil, in comparison to BP in HepG2 cells. Nanomolar concentrations of PAHs in the extracts induced activation of MEK4 signaling with down-stream increased gene expression of several important stress response mediators. Involvement of the MEK4/JNK pathway was confirmed using siRNA and an inhibitor of JNK signaling resulting in significantly reduced MAPK signaling transactivated by the AP-1 transcription factors ATF2 and c-Jun. ATF2 was also identified as a sensitive stress responsive protein with activation observed at extract concentrations equivalent to 0.1 nM BP. We show that exposure to low levels of environmental PAH mixtures more strongly activates these signaling pathways compared to BP alone suggesting effects due to interactions. Taken together, this is the first study showing the involvement of MEK4/JNK/AP-1 pathway in regulating the intracellular stress response after exposure to nanomolar levels of PAHs in environmental mixtures.
Resumo:
Valproic acid (VPA) and trichostatin A (TSA) are known histone deacetylase inhibitors (HDACIs) with epigenetic activity that affect chromatin supra-organization, nuclear architecture, and cellular proliferation, particularly in tumor cells. In this study, chromatin remodeling with effects extending to heterochromatic areas was investigated by image analysis in non-transformed NIH 3T3 cells treated for different periods with different doses of VPA and TSA under conditions that indicated no loss of cell viability. Image analysis revealed chromatin decondensation that affected not only euchromatin but also heterochromatin, concomitant with a decreased activity of histone deacetylases and a general increase in histone H3 acetylation. Heterochromatin protein 1-α (HP1-α), identified immunocytochemically, was depleted from the pericentromeric heterochromatin following exposure to both HDACIs. Drastic changes affecting cell proliferation and micronucleation but not alteration in CCND2 expression and in ratios of Bcl-2/Bax expression and cell death occurred following a 48-h exposure of the NIH 3T3 cells particularly in response to higher doses of VPA. Our results demonstrated that even low doses of VPA (0.05 mM) and TSA (10 ng/ml) treatments for 1 h can affect chromatin structure, including that of the heterochromatin areas, in non-transformed cells. HP1-α depletion, probably related to histone demethylation at H3K9me3, in addition to the effect of VPA and TSA on histone H3 acetylation, is induced on NIH 3T3 cells. Despite these facts, alterations in cell proliferation and micronucleation, possibly depending on mitotic spindle defects, require a longer exposure to higher doses of VPA and TSA.