953 resultados para Oscillatory bath
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Abstract Background The importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs. Methods Guinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies. Results Ovalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001). Conclusions In this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma. This functional alteration may be due to a high expression of 8-isoprostane, which had a procontractile effect. The mechanism involved in this response is likely related to the modulation of NF-kB expression, which contributed to the activation of the arginase and iNOS pathways. The association of both inhibitors potentiated the reduction of 8-isoprostane expression in this animal model.
Resumo:
The main effects on the dynamics of a liquid bridge due to the presence of an outer liquid, as occur in experiments using the Plateau-tank technique, are considered. The one-dimensional nonlinear model developed here allows us to perform the computation of both breaking processes and oscillatory motions of slender liquid bridges, although in this paper only the results concerning breaking processes are reported. Additionally,the oscillatory motions are studied both experimentally and by using a new linear model. Results from both sources show good agreement
Resumo:
Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.
Resumo:
We introduce a genetic programming (GP) approach for evolving genetic networks that demonstrate desired dynamics when simulated as a discrete stochastic process. Our representation of genetic networks is based on a biochemical reaction model including key elements such as transcription, translation and post-translational modifications. The stochastic, reaction-based GP system is similar but not identical with algorithmic chemistries. We evolved genetic networks with noisy oscillatory dynamics. The results show the practicality of evolving particular dynamics in gene regulatory networks when modelled with intrinsic noise.
Resumo:
Unsteady numerical simulation of Rayleigh Benard convection heat transfer from a 2D channel is performed. The oscillatory behavior is attributed to recirculation of ascending and descending flows towards the core of the channel producing organized rolled motions. Variation of the parameters such as Reynolds number, channel outlet flow area and inclination of the channel are considered. Increasing Reynolds number (for a fixed Rayleigh number), delays the generation of vortices. The reduction in the outflow area leads to the later and the less vortex generation. As the time progresses, more vortices are generated, but the reinforced mean velocity does not let the eddies to enter the core of the channel. Therefore, they attach to the wall and reduce the heat transfer area. The inclination of the channel (both positive and negative) induces the generated vortices to get closer to each other and make an enlarged vortex.
Resumo:
Based on a Hamiltonian description we present a rigorous derivation of the transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative. Since we do not assume anything about the spectral nature of the harmonic bath the derivation is not restricted only to the Ohmic bath, rather it is more general, for a non-Ohmic bath. We also derive expressions of the average work done and the variance of the work done in terms of the two-time correlation function of the fluctuations of the position of the harmonic oscillator. In the case of an Ohmic bath, we use these relations to evaluate the average work done and the variance of the work done analytically and verify the transient state work fluctuation theorem quantitatively. Actually these relations have far-reaching consequences. They can be used to numerically evaluate the average work done and the variance of the work done in the case of a non-Ohmic bath when analytical evaluation is not possible.
Resumo:
Neuronal oscillations are thought to underlie interactions between distinct brain regions required for normal memory functioning. This study aimed at elucidating the neuronal basis of memory abnormalities in neurodegenerative disorders. Magnetoencephalography (MEG) was used to measure oscillatory brain signals in patients with Alzheimer s disease (AD), a neurodegenerative disease causing progressive cognitive decline, and mild cognitive impairment (MCI), a disorder characterized by mild but clinically significant complaints of memory loss without apparent impairment in other cognitive domains. Furthermore, to help interpret our AD/MCI results and to develop more powerful oscillatory MEG paradigms for clinical memory studies, oscillatory neuronal activity underlying declarative memory, the function which is afflicted first in both AD and MCI, was investigated in a group of healthy subjects. An increased temporal-lobe contribution coinciding with parieto-occipital deficits in oscillatory activity was observed in AD patients: sources in the 6 12.5 Hz range were significantly stronger in the parieto-occipital and significantly weaker in the right temporal region in AD patients, as compared to MCI patients and healthy elderly subjects. Further, the auditory steady-state response, thought to represent both evoked and induced activity, was enhanced in AD patients, as compared to controls, possibly reflecting decreased inhibition in auditory processing and deficits in adaptation to repetitive stimulation with low relevance. Finally, the methodological study revealed that successful declarative encoding and retrieval is associated with increases in occipital gamma and right hemisphere theta power in healthy unmedicated subjects. This result suggests that investigation of neuronal oscillations during cognitive performance could potentially be used to investigate declarative memory deficits in AD patients. Taken together, the present results provide an insight on the role of brain oscillatory activity in memory function and memory disorders.
Resumo:
An oscillatory flow of a viscous incompressible fluid in an elastic tube of variable cross section has been investigated at low Reynolds number. The equations governing, the flow are derived under the assumption that the variation of the cross-section is slow in the axial direction for a tethered tube. The problem is then reduced to that of solving for the excess pressure from a second order ordinary differential equation with complex valued Bessel functions as the coefficients. This equation has been solved numerically for geometries of physiological interest and a comparison is made with some of the known theoretical and experimental results.
Resumo:
Aim: So far, most of the cognitive neuroscience studies investigating the development of brain activity in childhood have made comparisons between different age groups and ignored the individual stage of cognitive development. Given the wide variation in the rate of cognitive development, this study argues that chronological age alone cannot explain the developmental changes in brain activity. This study demonstrates how Piaget s theory and information on child s individual stage of development can complement the age-related evaluations of brain oscillatory activity. In addition, the relationship between cognitive development and working memory is investigated. Method: A total of 33 children (17 11-year-olds, 16 14-year-olds) participated in this study. The study consisted of behavioural tests and an EEG experiment. Behavioral tests included two Piagetian tasks (the Volume and Density task, the Pendulum task) and Raven s Standard Progressive Matrices task. During EEG experiment, subjects performed a modified version of the Sternberg s memory search paradigm which consisted of an auditorily presented memory set of 4 words and a probe word following these. The EEG data was analyzed using the event-related desynchronization / synchronization (ERD/ERS) method. The Pendulum task was used to assess the cognitive developmental stage of each subject and to form four groups based on age (11- or 14-year-olds) and cognitive developmental stage (concrete or formal operational stage). Group comparisons between these four groups were performed for the EEG data. Results and conclusions: Both age- and cognitive stage-related differences in brain oscillatory activity were found between the four groups. Importantly, age-related changes similar to those reported by previous studies were found also in this study, but these changes were modified by developmental stage. In addition, the results support a strong link between working memory and cognitive development by demonstrating differences in memory task related brain activity and cognitive developmental stages. Based on these findings it is suggested that in the future, comparisons of development of brain activity should not be based only on age but also on the individual cognitive developmental stage.
Resumo:
Avoiding the loss of coherence of quantum mechanical states is an important prerequisite for quantum information processing. Dynamical decoupling (DD) is one of the most effective experimental methods for maintaining coherence, especially when one can access only the qubit system and not its environment (bath). It involves the application of pulses to the system whose net effect is a reversal of the system-environment interaction. In any real system, however, the environment is not static, and therefore the reversal of the system-environment interaction becomes imperfect if the spacing between refocusing pulses becomes comparable to or longer than the correlation time of the environment. The efficiency of the refocusing improves therefore if the spacing between the pulses is reduced. Here, we quantify the efficiency of different DD sequences in preserving different quantum states. We use C-13 nuclear spins as qubits and an environment of H-1 nuclear spins as the environment, which couples to the qubit via magnetic dipole-dipole couplings. Strong dipole-dipole couplings between the proton spins result in a rapidly fluctuating environment with a correlation time of the order of 100 mu s. Our experimental results show that short delays between the pulses yield better performance if they are compared with the bath correlation time. However, as the pulse spacing becomes shorter than the bath correlation time, an optimum is reached. For even shorter delays, the pulse imperfections dominate over the decoherence losses and cause the quantum state to decay.