62 resultados para Osciladores


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta dissertação pretende-se dar em primeiro lugar uma teoria geral sobre a chamada sincronização generalizada entre osciladores acoplados. Este conceito mais geral de sincronização revela uma estrutura mais complexa da interacção de osciladores acoplados, sendo por esta razão o passo natural a ser dado face ao conceito mais tradicional de sincronização idêntica. A sincronização generalizada tem uma forte componente geométrica através dos trabalhos de Wazewski e de Russel Smith. Esta teoria geral permite estudar de uma forma mais eficiente as condições de sincronização (generalizada) para sistemas com perturbações não-lineares. Neste trabalho vemos que os resultados referentes a sincronização idêntica saem como caso particular do conceito mais geral. Por outro lado, no caso estudado, as perturbações não-lineares ocorrem dentro de domínios bem determinados. Abordamos também a possibilidade de adaptar algoritmos computacionais a estes domínios, de forma a podermos transmitir de uma maneira mais intuitiva as condições mais gerais de sincronização. Por último, e como projecto futuro, apresentamos uma discussão de sincronização idêntica em sistemas de segunda ordem, que pretendem reproduzir a situação original de identificação de sincronização por Huygens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Ingeniería Eléctrica con Orientación en Control Automático) UANL, 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Ingeniería Eléctrica con Orientación en Control Automático) UANL, 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho utiliza-se como sistema dinâmico o circuito eletrônico que integra o sistema de equações acopladas de Rossler modificado. Este sistema possui uma nãolinearidade dada por uma função linear por partes e apresenta comportamento caótico para certos valores dos seus parâmetros. Isto e evidenciado pela rota de dobramento de período obtida variando-se um dos parâmetros do sistema. A caracterização experimental da dinâmica do sistema Rossler modificado e realizada através do diagrama de bifurcações. Apresenta-se uma fundamentação teórica de sistemas dinâmicos introduzindo conceitos importantes tais como atratores estranhos, variedades invariantes e tamb em uma análise da estabilidade de comportamentos assintóticos como pontos fixos e ciclos limites. Para uma caracterização métrica do caos, apresenta-se a definção dos expoentes de Lyapunov. São introduzidos também os expoentes de Lyapunov condicionais e transversais, que estão relacionados com a teoria de sincronizção de sistemas caóticos. A partir de uma montagem mestre-escravo, onde dois osciladores de Rossler estão acoplados unidirecionalmente, introduz-se a de nição de sincronização idêntica, sincronização de fase e variedade de sincronização. Demonstra-se a possibilidade de sincronização em uma rede de osciladores caóticos de Rossler, acoplados simetricamente via acoplamento de primeiros vizinhos. A rede composta por seis osciladores mostrou ser adequada pelo fato de apresentar uma rica estrutura espacial e, ao mesmo tempo, ser experimentalmente implementável. Além da sincronização global (osciladores identicamente sincronizados), obtém-se a sincronização parcial, onde parte dos osciladores sincronizam entre si e a outra parte não o faz. Esse tipo de sincronização abre a possibilidade da formação de padrões de sincronização e, portanto, exibe uma rica estrutura de comportamentos dinâmicos. A sincronização parcial e investigada em detalhes e apresentam-se vários resultados. A principal ferramenta utilizada na análise experimental e numérica e a inspeção visual do gráfico yi yj , fazendo todas as combinações entre elementos diferentes (i e j) da rede. Na análise numérica obtém-se como resultado complementar o máximo expoente de Lyapunov transversal, que descreve a estabilidade da variedade de sincronização global.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A presente dissertação versa sobre a sincronização idêntica em redes de osciladores caóticos. Uma perspectiva razoavelmente histórica sobre a literatura da área é apresentada . O conceito de caos é introduzido junto com outras idéias da dinâmica não-linear: sistemas dinâmicos, exemplos de sistemas, atratores, expoentes de Liapunov, etc. A integração numérica de equações diferenciais é largamente utilizada, principalmente, para o cálculo de expoentes e o desenho do diagrama de fases. A sincronização idêntica é definida, inicialmente, em redes que não passam de um par de osciladores. A variedade de sincronização (conjunto de pontos no espaço de fases no qual a solução do sistema é encontrada se há sincronização) é determinada. Diferentes variantes de acoplamentos lineares são enfocadas: acoplamento interno, externo, do tipo mestre-escravo e birecional, entre outras. Para detectar sincronização, usa-se o conceito de expoente de Liapunov transversal, uma extensão do conceito clássico de expoente de Liapunov que caracteriza a sincronização como a existência de um atrator na variedade de sincronização. A exposição é completada com exemplos e atinge relativo detalhe sobre o assunto, sem deixar de ser sintética com relação à ampla literatura existente. Um caso de sincronização em antifase que usa a mesma análise é incluído. A sincronização idêntica também é estudada em redes de osciladores idênticos com mais de dois osciladores. As possibilidades de sincronização completa e parcial são explanadas. As técnicas usadas para um par de osciladores são expandidas para cobrir este novo tipo de redes. A existência de variedades de sincronização invariantes é considerada como fator determinante para a sincronização. A sincronização parcial gera estruturas espaciais, analisadas sob a denominação de padrões. Algumas relações importantes entre as sincronizações são explicitadas, principalmente as degenerescências e a relação entre a sincronização parcial e a sincronização completa do respectivo estado sincronizado para alguns tipos de acoplamento. Ainda são objetos de interesse as redes formadas por grupos de osciladores idênticos que são diferentes dos osciladores dos outros grupos. A sincronização parcial na qual todos os grupos de osciladores têm seus elementos sincronizados é chamada de sincronização primária. A sincronização secundária é qualquer outro tipo de sincronização parcial. Ambas são exemplificadas e analisadas por meio dos expoentes transversais e novamente por meio da existência de invariantes de sincronização. Obtém-se, então, uma caracterização suficientemente ampla, completada por casos específicos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the use of the NDF is proposed as a general method suitable for analysing any oscillator topology. The most important advantage of this method is that it provides an unique procedure to analyse any oscillator. It also makes possible the phase noise optimization in the linear design phase for any oscillator. An additional advantage of this method is that it does not require any proviso verification as all classic methods need. The use of the NDF method is illustrated with the design of two examples. These two oscillators are manufactured and the simulation results are compared with the measurements showing good agreement. These results confirm the excellent possibilities of the proposed method for low noise oscillators design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En 1966, D. B. Leeson publicó el artículo titulado “A simple model of feedback oscillator noise spectrum” en el que, mediante una ecuación obtenida de forma heurística y basada en parámetros conocidos de los osciladores, proponía un modelo para estimar el espectro de potencia que cuantifica el Ruido de Fase de estos osciladores. Este Ruido de Fase pone de manifiesto las fluctuaciones aleatorias que se producen en la fase de la señal de salida de cualquier oscilador de frecuencia f_0. Desde entonces, los adelantos tecnológicos han permitido grandes progresos en cuanto a la medida del Ruido de Fase, llegando a encontrar una estrecha “zona plana”, alrededor de f_0, conocida con el nombre de Ensanchamiento de Línea (EL) que Leeson no llegó a observar y que su modelo empírico no recogía. Paralelamente han ido surgiendo teorías que han tratado de explicar el Ruido de Fase con mayor o menor éxito. En esta Tesis se propone una nueva teoría para explicar el espectro de potencia del Ruido de Fase de un oscilador realimentado y basado en resonador L-C (Inductancia-Capacidad). Al igual que otras teorías, la nuestra también relaciona el Ruido de Fase del oscilador con el ruido térmico del circuito que lo implementa pero, a diferencia de aquellas, nuestra teoría se basa en un Modelo Complejo de ruido eléctrico que considera tanto las Fluctuaciones de energía eléctrica asociadas a la susceptancia capacitiva del resonador como las Disipaciones de energía eléctrica asociadas a su inevitable conductancia G=1⁄R, que dan cuenta del contacto térmico entre el resonador y el entorno térmico que le rodea. En concreto, la nueva teoría que proponemos explica tanto la parte del espectro del Ruido de Fase centrada alrededor de la frecuencia portadora f_0 que hemos llamado EL y su posterior caída proporcional a 〖∆f〗^(-2) al alejarnos de f_0, como la zona plana o pedestal que aparece en el espectro de Ruido de Fase lejos de esa f_0. Además, al saber cuantificar el EL y su origen, podemos explicar con facilidad la aparición de zonas del espectro de Ruido de Fase con caída 〖∆f〗^(-3) cercanas a la portadora y que provienen del denominado “exceso de ruido 1⁄f” de dispositivos de Estado Sólido y del ruido “flicker” de espectro 1⁄f^β (0,8≤β≤1,2) que aparece en dispositivos de vacío como las válvulas termoiónicas. Habiendo mostrado que una parte del Ruido de Fase de osciladores L-C realimentados que hemos denominado Ruido de Fase Térmico, se debe al ruido eléctrico de origen térmico de la electrónica que forma ese oscilador, proponemos en esta Tesis una nueva fuente de Ruido de Fase que hemos llamado Ruido de Fase Técnico, que se añadirá al Térmico y que aparecerá cuando el desfase del lazo a la frecuencia de resonancia f_0 del resonador no sea 0° o múltiplo entero de 360° (Condición Barkhausen de Fase, CBF). En estos casos, la modulación aleatoria de ganancia de lazo que realiza el Control Automático de Amplitud en su lucha contra ruidos que traten de variar la amplitud de la señal oscilante del lazo, producirá a su vez una modulación aleatoria de la frecuencia de tal señal que se observará como más Ruido de Fase añadido al Térmico. Para dar una prueba empírica sobre la existencia de esta nueva fuente de Ruido de Fase, se diseñó y construyó un oscilador en torno a un resonador mecánico “grande” para tener un Ruido de Fase Térmico despreciable a efectos prácticos. En este oscilador se midió su Ruido de Fase Técnico tanto en función del valor del desfase añadido al lazo de realimentación para apartarlo de su CBF, como en función de la perturbación de amplitud inyectada para mostrar sin ambigüedad la aparición de este Ruido de Fase Técnico cuando el lazo tiene este fallo técnico: que no cumple la Condición Barkhausen de Fase a la frecuencia de resonancia f_0 del resonador, por lo que oscila a otra frecuencia. ABSTRACT In 1966, D. B. Leeson published the article titled “A simple model of feedback oscillator noise spectrum” in which, by means of an equation obtained heuristically and based on known parameters of the oscillators, a model was proposed to estimate the power spectrum that quantifies the Phase Noise of these oscillators. This Phase Noise reveals the random fluctuations that are produced in the phase of the output signal from any oscillator of frequencyf_0. Since then, technological advances have allowed significant progress regarding the measurement of Phase Noise. This way, the narrow flat region that has been found around f_(0 ), is known as Line Widening (LW). This region that Leeson could not detect at that time does not appear in his empirical model. After Leeson’s work, different theories have appeared trying to explain the Phase Noise of oscillators. This Thesis proposes a new theory that explains the Phase Noise power spectrum of a feedback oscillator around a resonator L-C (Inductance-Capacity). Like other theories, ours also relates the oscillator Phase Noise to the thermal noise of the feedback circuitry, but departing from them, our theory uses a new, Complex Model for electrical noise that considers both Fluctuations of electrical energy associated with the capacitive susceptance of the resonator and Dissipations of electrical energy associated with its unavoidable conductance G=1/R, which accounts for the thermal contact between the resonator and its surrounding environment (thermal bath). More specifically, the new theory we propose explains both the Phase Noise region of the spectrum centered at the carrier frequency f_0 that we have called LW and shows a region falling as 〖∆f〗^(-2) as we depart from f_0, and the flat zone or pedestal that appears in the Phase Noise spectrum far from f_0. Being able to quantify the LW and its origin, we can easily explain the appearance of Phase Noise spectrum zones with 〖∆f〗^(-3) slope near the carrier that come from the so called “1/f excess noise” in Solid-State devices and “flicker noise” with 1⁄f^β (0,8≤β≤1,2) spectrum that appears in vacuum devices such as thermoionic valves. Having shown that the part of the Phase Noise of L-C oscillators that we have called Thermal Phase Noise is due to the electrical noise of the electronics used in the oscillator, this Thesis can propose a new source of Phase Noise that we have called Technical Phase Noise, which will appear when the loop phase shift to the resonance frequency f_0 is not 0° or an integer multiple of 360° (Barkhausen Phase Condition, BPC). This Phase Noise that will add to the Thermal one, comes from the random modulation of the loop gain carried out by the Amplitude Automatic Control fighting against noises trying to change the amplitude of the oscillating signal in the loop. In this case, the BPC failure gives rise to a random modulation of the frequency of the output signal that will be observed as more Phase Noise added to the Thermal one. To give an empirical proof on the existence of this new source of Phase Noise, an oscillator was designed and constructed around a “big” mechanical resonator whose Thermal Phase Noise is negligible for practical effects. The Technical Phase Noise of this oscillator has been measured with regard to the phase lag added to the feedback loop to separate it from its BPC, and with regard to the amplitude disturbance injected to show without ambiguity the appearance of this Technical Phase Noise that appears when the loop has this technical failure: that it does not fulfill the Barkhausen Phase Condition at f_0, the resonance frequency of the resonator and therefore it is oscillating at a frequency other than f_0.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reintroduces the discussion about stress-timing in Brazilian Portuguese (BP). It begins by surveying some phonetic and phonological issues raised by the syllable- vs stress-timed dichotomy which culminated with the emergence of the p-center notion. Strict considerations of timing of V-V units and stress groups are taken into account to analyze the long term coupling of two basic oscillators (vowel and stress flow). This coupling allows a two-parameter characterization of language rhythms (coupling strength and speech rate) revealing that BP utterances present a high-degree of syllable-timing. A comparison with other languages, including European Portuguese, is also presented. The results analyzed indicate that Major's arguments for considering Portuguese (sic) as stress-timing are misleading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste artigo apresentamos uma descrição geral da física do violino, analisando os conceitos que lhes dão sustentação física e que revelam toda a riqueza e o potencial pedagógico do assunto. Destacamos as contribuições de físicos como Helmholtz, Savart, Raman e Saunders no esforço para descrever a vibração produzida pelo arco nas cordas, e por compreender as propriedades acústicas do instrumento. Descrevemos a função de cada uma das componentes do instrumento e discutimos a importância dos modos normais de vibração dos tampos e do cavalete na resposta acústica do violino. A ressonância acústica da caixa do violino (ressonância de Helmholtz) será discutida fazendo-se um paralelo entre osciladores mecânico, elétrico e acústico. Discutiremos a resposta acústica do violino e descreveremos a produção de seu som caraterístico, que resulta da forma de onda originada pela excitação das cordas pelo arco, influenciada pelas vibrações e ressonâncias do corpo do violino, seus tampos e o cavalete.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho estuda-se a geração de trajectórias em tempo real de um robô quadrúpede. As trajectórias podem dividir-se em duas componentes: rítmica e discreta. A componente rítmica das trajectórias é modelada por uma rede de oito osciladores acoplados, com simetria 4 2 Z  Z . Cada oscilador é modelado matematicamente por um sistema de Equações Diferenciais Ordinárias. A referida rede foi proposta por Golubitsky, Stewart, Buono e Collins (1999, 2000), para gerar os passos locomotores de animais quadrúpedes. O trabalho constitui a primeira aplicação desta rede à geração de trajectórias de robôs quadrúpedes. A derivação deste modelo baseia-se na biologia, onde se crê que Geradores Centrais de Padrões de locomoção (CPGs), constituídos por redes neuronais, geram os ritmos associados aos passos locomotores dos animais. O modelo proposto gera soluções periódicas identificadas com os padrões locomotores quadrúpedes, como o andar, o saltar, o galopar, entre outros. A componente discreta das trajectórias dos robôs usa-se para ajustar a parte rítmica das trajectórias. Este tipo de abordagem é útil no controlo da locomoção em terrenos irregulares, em locomoção guiada (por exemplo, mover as pernas enquanto desempenha tarefas discretas para colocar as pernas em localizações específicas) e em percussão. Simulou-se numericamente o modelo de CPG usando o oscilador de Hopf para modelar a parte rítmica do movimento e um modelo inspirado no modelo VITE para modelar a parte discreta do movimento. Variou-se o parâmetro g e mediram-se a amplitude e a frequência das soluções periódicas identificadas com o passo locomotor quadrúpede Trot, para variação deste parâmetro. A parte discreta foi inserida na parte rítmica de duas formas distintas: (a) como um offset, (b) somada às equações que geram a parte rítmica. Os resultados obtidos para o caso (a), revelam que a amplitude e a frequência se mantêm constantes em função de g. Os resultados obtidos para o caso (b) revelam que a amplitude e a frequência aumentam até um determinado valor de g e depois diminuem à medida que o g aumenta, numa curva quase sinusoidal. A variação da amplitude das soluções periódicas traduz-se numa variação directamente proporcional na extensão do movimento do robô. A velocidade da locomoção do robô varia com a frequência das soluções periódicas, que são identificadas com passos locomotores quadrúpedes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Controlo e Gestão e dos Negócios

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estudamos a dinâmica de sistemas não-autónomos periódicos que têm como espaço de fases o cilindro. Sempre que o sistema for dissipativo a aplicação de Poincaré tem um atractor. Procuramos condições para que este atractor seja ou não homeomorfo ao círculo. Motivados pelos resultados obtidos por M. Levi e independentemente por Q. Min, S. Xian e Z. Jinyan estudamos aplicações à equação do pêndulo forçado com atrito. Encontramos relações com a trabalho de R. A. Smith que utilizamos no estudo de sistemas de osciladores acoplados e equações ordinárias de ordem n.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Contabilidade e Análise Financeira

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e Computadores