29 resultados para Osbeckia crinita
Resumo:
本研究对假朝天罐(Osbeckia crinita Benth.)的地上部分乙醇提取物进行了化学成分分析以及体外抑菌实验。实验表明假朝天罐的叶对克雷伯杆菌,变形杆菌和金黄色葡萄球菌有较强的抑菌作用。对假朝天罐的化学成分进行了研究,分离得到六个化合物:β-谷甾醇、熊果酸、胡萝卜甙、槲皮素-3-鼠李糖甙、槲皮素-3-鼠李糖甙是首次从该属植物中获得。 从化学成分与体外抑菌活性对应的角度,同时参考同属植物抗氧化成分研究的过程,对假朝天罐的继续深入研究以确定其体外抑菌活性机理提出了展望。
How subtle are the biases that shape the fidelity of the fossil record? A test using marine molluscs
Resumo:
Biases in preservation shape the fossil record, and therefore impact on our reconstructions of past environments and biodiversity. Given the intensive recent research in the general fields of taphonomy and exceptional preservation, surprisingly, fundamental questions remain unanswered about species-level variation in skeletal preservation potential at low taxonomic levels (e.g. between genera from the same family, or between taxa from related families) across myriad groups with multi-element skeletons. Polyplacophoran molluscs (chitons sensu lato) are known from the late Cambrian to Recent, and possess a distinctive articulated scleritome consisting of eight overlapping calcareous valves. The apparent uniformity of living chitons presents an ideal model to test the potential for taphonomic biases at the alpha-taxon level. The vast majority of fossil chitons are preserved as single valves; few exhibit body preservation or even an articulated shell series. An experimental taphonomic programme was conducted using the Recent polyplacophorans Lepidochitona cinerea and Tonicella marmorea (suborder Chitonina) and Acanthochitona crinita (Acanthochitonina). Experiments in a rock tumbler on disarticulated valves found differential resistance to abrasion between taxa; in one experiment 53.8-61.5% of Lepidochitona valves were recovered but 92% of those from Tonicella and 100% of elements from Acanthochitona. Chiton valves and even partly decayed carcasses are more resistant to transportation than their limited fossil record implies. Different species of living chitons have distinctly different preservation potential. This, problematically, does not correlate with obvious differences in gross valve morphology; some, but not all, of the differences correlate with phylogeny. Decay alone is sufficient to exacerbate differences in preservation potential of multi-element skeletons; some, but not all, of the variation that results is due to specimen size and the fidelity of the fossil record will thus vary intra-specifically (e.g. between ontogenetic stages) as well as inter-specifically.
Resumo:
Les algues del gènere Cystoseira són els principals organismes formadors d'estructura en fons rocosos ben il·luminats del Mar Mediterrani. Formen unes comunitats molt estructurades que s'assemblen ecològicament als boscos terrestres i que són sensibles als impactes antròpics. Aquesta tesi s'ha centrat en l'estudi de les espècies i comunitats dominades per Cystoseira que es troben en ambients calmats, és a dir, en petites cales i/o badies. S'han abordat diversos aspectes com són la distribució, composició, estructura i biogeografia d'aquestes comunitats, així com els efectes de la contaminació sobre les mateixes. Per una banda, s'ha documentat l'estat actual de les comunitats dominades per C. crinita a nombrosos llocs al llarg de tot el Mediterrani, aportant informació sobre la seva composició, estructura, variació biogeogràfica i dinàmica de la comunitat a llarg termini. S'ha documentat la desaparició de diverses espècies de Cystoseira en zones afectades per impactes antròpics diversos i s'ha proporcionat la primera evidència experimental de la desaparició d'espècies de Cystoseira a causa de la contaminació.
Resumo:
Il presente lavoro di tesi si propone di confrontare la risposta delle comunità bentoniche associate a una macroalga “habitat-former”, Cystoseira crinita (Duby), sottoposte a diverse intensità e frequenze di calpestio, tramite un esperimento di manipolazione in campo. Tale simulazione si è svolta in un tratto di costa rocciosa nel SIC (Sito di Importanza Comunitaria) di “Berchida-Bidderosa”, Sardegna Nord-Orientale. I risultati di questo esperimento mostrano come, in conseguenza del calpestio, si possa osservare una significativa perdita di biomassa di Cystoseira crinita. La perdita di biomassa si registra principalmente nei campioni sottoposti a calpestio con frequenze/intensità maggiori di 50 passi per unità di area. Le aree sottoposte a medio-alta frequenza/intensità di calpestio non mostrano nel breve periodo un significativo recupero della biomassa algale. Nel presente studio il confronto tra intensità e frequenze di calpestio rivela che il calpestio ripetuto in più giornate non mostra differenze significative rispetto a quello effettuato in un unica giornata. Il fattore che sembra incidere maggiormente sulla perdita di biomassa di Cystoseira crinita è dunque l’intensità di calpestio. L’analisi dei campioni meiobentonici ha rivelato una ricca comunità animale associata a Cystoseira crinita, con 29 taxa identificati. Analizzando gli effetti del calpestio si osserva come la meiofauna risenta negativamente dell’effetto del calpestio in termini di perdita di densità totale e di riduzione del numero di taxa, anche a basse intensità. I campioni meiofaunali sottoposti a medio alte intensità di calpestio non mostrano un recupero nel breve periodo. I risultati ottenuti sull’insieme dei popolamenti, in termini multivariati mostrano un evoluzione della struttura di comunità nel tempo, indicando una variazione delle relazioni di dominanza fra i taxa, che si modificano fra i diversi trattamenti e tempi. Anche nel caso delle analisi condotte sulla meiofauna non si riscontrano differenze tra intensità di calpestio e frequenze. Per valutare quanto la risposta dei popolamenti meiobentonici sia correlata alle variazioni di biomassa di Cystoseira crinita rispetto che ad un effetto diretto del calpestio, tutte le analisi sono state condotte pesando le densità dei diversi taxa in funzione della biomassa algale. Le analisi multivariate mostrano una chiara correlazione tra la biomassa algale e struttura della comunità meiobentoniche. L’effetto del calpestio riduce le abbondanze di organismi meiobentonici in maniera diretta, mentre il successivo ripopolamento dei differenti taxa è legato al recupero o meno di biomassa di Cystoseira crinita. In conclusione, i risultati di questo studio confermano che il calpestio umano sulle coste rocciose possa danneggiare una specie considerata ad alto valore ecologico, come Cystoseira crinita, producendo inoltre effetti negativi diretti ed indiretti sui popolamenti meiobentonici ad essa associati.
Resumo:
La división de matas es una técnica de propagación difundida con gran éxito entre las Gramíneas. Cuando se trata de la producción comercial de este grupo de plantas, es importante conocer la época en que se realiza esta práctica para obtener plantas de la mejor calidad en el menor tiempo posible. Según algunos autores, la estación apropiada para dividir gramíneas está relacionada con el momento de activo crecimiento: primavera tardía para las especies estivales y otoño o primavera temprana para las invernales. En este trabajo se estudió la influencia de la época del año en la división de matas de Miscanthus sinensis "Variegatus", Miscanthus sinensis "Zebrinus", Miscanthus sinensis "Morning Light", Paspalum haumanii, Leymus arenarius, Pennisetum setaceum y Trichloris crinita en diciembre y febrero. Se evaluaron las características ornamentales y la precocidad, con fines comerciales, de las plantas obtenidas en otoño y primavera tardía. Las variables utilizadas fueron altura vegetativa, diámetro de canopia y de corona, número de cañas y porcentaje de sobrevivencia. Desde el punto de vista comercial y productivo, es conveniente realizar la división de matas en otoño para obtener precocidad sólo en M. sinensis "Variegatus" y M. sinensis "Zebrinus". En el caso de M. sinensis "Morning Light", P. setaceum, T. crinita, P. haumanii y Leymus es más adecuada la división de primavera.
Resumo:
In deserts, seedling emergence occurs only after precipitation threshold has been exceeded, however, the presence of trees modifies microenvironmental conditions that might affect the effectiveness of a water pulse. In the Monte desert, Prosopis flexuosa trees generate different micro-environmental conditions that might influence grass seedlings establishment. The objective of this work was: a) to know the effective minimum water input event that triggers the emergence of native perennial grass seedlings; b) to relate this fact with the effect of the shade of P. flexuosa canopy and the seasonal temperatures. Three important forage species of the Monte were studied: Pappophorum caespitosum and Trichloris crinita, with C4, and Jarava ichu, with C3 metabolism. Each season, seeds of these species were sown in pots placed at two light conditions: shade (similar to P. flexuosa cover) and open area, and with seven irrigation treatments (0, 10, 20, 30, 40, 2*10 and 3*10 mm). J. ichu did not emerge in any of the treatments. Significant seedling emergence was registered for P. caespitosum and T. crinita in shade conditions with 40 mm irrigation treatment in summer. Since 40 mm precipitation events are infrequent in the Monte, seedling emergence for these species would be restricted to exceptional rainy years. The facilitating effect of P. flexuosa shade would be important during the hot season.
Resumo:
Three Antarctic Ocean K/T boundary sequences from ODP Site 738C on the Kerguelen Plateau, ODP Site, 752B on Broken Ridge and ODP Site 690C on Maud Rise, Weddell Sea, have been analyzed for stratigraphic completeness and faunal turnover based on quantitative planktic foraminiferal studies. Results show that Site 738C, which has a laminated clay layer spanning the K/T boundary, is biostratigraphically complete with the earliest Tertiary Zones P0 and P1a present, but with short intrazonal hiatuses. Site 752B may be biostratigraphically complete and Site 690C has a hiatus at the K/T boundary with Zones P0 and P1a missing. Latest Cretaceous to earliest Tertiary planktic foraminiferal faunas from the Antarctic Ocean are cosmopolitan and similar to coeval faunas dominating in low, middle and northern high latitudes, although a few endemic species are present. This allows application of the current low and middle latitude zonation to Antarctic K/T boundary sequences. The most abundant endemic species is Chiloguembelina waiparaensis, which was believed to have evolved in the early Tertiary, but which apparently evolved as early as Chron 30N at Site 738C. Since this species is only rare in sediments of Site 690C in the Weddell Sea, this suggests that a watermass oceanographic barner may have existed between the Indian and Atlantic Antarctic Oceans. The cosmopolitan nature of the dominant fauna began during the last 200,000 to 300,000 years of the Cretaceous and continued at least 300,000 years into the Tertiary. This indicates a long-term environmental crisis that led to gradual elimination of specialized forms and takeover by generalists tolerant of wide ranging temperature, oxygen, salinity and nutrient conditions. A few thousand years before the K/T boundary these generalists gradually declined in abundance and species became generally dwarfed due to increased environmental stress. There is no evidence of a sudden mass killing of the Cretaceous fauna associated with a bolide impact at the K/T boundary. Instead, the already declining Cretaceous taxa gradually disappear in the early Danian and the opportunistic survivor taxa (Ch. waiparaensis and Guembelitria cretacea) increase in relative abundance coincident with the evolution of the first new Tertiary species.
Resumo:
Bulk carbonate content, planktic and benthic foraminiferal assemblages, stable isotope compositions of bulk carbonate and Nuttallides truempyi (benthic foraminifera), and non-carbonate mineralogy were examined across ~30 m of carbonate-rich Paleogene sediment at Deep Sea Drilling Project (DSDP) Site 259, on Perth Abyssal Plain off Western Australia. Carbonate content, mostly reflecting nannofossil abundance, ranges from 3 to 80% and generally exceeds 50% between 35 and 57 mbsf. A clay-rich horizon with a carbonate content of about 37% occurs between 55.17 and 55.37 mbsf. The carbonate-rich interval spans planktic foraminiferal zones P4c to P6b (~57-52 Ma), with the clay-rich horizon near the base of our Zone P5 (upper)-P6b. Throughout the studied interval, benthic species dominate foraminiferal assemblages, with scarce planktic foraminifera usually of poor preservation and limited species diversity. A prominent Benthic Foraminiferal Extinction Event (BFEE) occurs across the clay-rich horizon, with an influx of large Acarinina immediately above. The delta13C records of bulk carbonate and N. truempyi exhibit trends similar to those observed in upper Paleocene-lower Eocene (~57-52 Ma) sediment from other locations. Two successive decreases in bulk carbonate and N. truempyi delta13C of 0.5 and 1.0? characterize the interval at and immediately above the BFEE. Despite major changes in carbonate content, foraminiferal assemblages and carbon isotopes, the mineralogy of the non-carbonate fraction consistently comprises expanding clay, heulandite (zeolite), quartz, feldspar (sodic or calcic), minor mica, and pyrolusite (MnO2). The uniformity of this mineral assemblage suggests that Site 259 received similar non-carbonate sediment before, during and after pelagic carbonate deposition. The carbonate plug at Site 259 probably represents a drop in the CCD from ~57 to 52-51 Ma, as also recognized at other locations.
Resumo:
Stratigraphy of Paleogene deposits from high latitudes of the Pacific region (Koryak Highland, Kamchatka Peninsula, Karaginsky Island - in the northern hemisphere, Australian-Antarctic region - in the southern hemisphere) on planktonic foraminifera are under consideration in the book. Correlation with Paleogene of the warm Pacific belt is given. On the basis of geographic and stratigraphic distributions of planktonic foraminifera climatic zonation and the Paleogene climatic curve are analyzed. Description and photos of 115 species and varieties of planktonic foraminifera are given in the palaeontological part of the book.
Resumo:
Planktic foraminifera across the Paleocene-Eocene transition at DSDP Site 401 indicate that the benthic foraminiferal mass extinction occurred within Subzone P 6a of Berggren and Miller (1988), or PS of Berggren et al. (1995) and coincident with a sudden 2.0? excursion in 6r3C values. The benthic foraminiferal extinction event (BFEE) and Sr3C excursion was accompanied by a planktic foraminiferal turnover marked by an influx of warm water species (Morozovella and Acarinina), a decrease in cooler water species (Subbotina), a sudden short-term increase in low oxygen tolerant taxa (Chiloguembelina), and no significant species extinctions. These faunal changes suggest climatic warming, expansion of the oxygen minimum zone, and a well stratified ocean water column. Oxygen isotope data of the surface dweller M. subbotina suggest climate warming beginning with a gradual 0.5? decrease in delta180 in the 175 cm preceding the benthic foraminiferal extinction event followed by a sudden decrease of 1? (4°C) at the BFEE. The delta13C excursion occurred over 27 cm of sediment and, assuming constant sediment accumulation rates, represents a maximum of 23 ka. Recovery to pre-excursion delta13C values occurs within 172 cm, or about 144 ka. Climate cooling begins in Subzone P 6c as indicated by an increase in cooler water subbotinids and acarininids with rounded chambers and a decrease in warm water morozovellids.
Resumo:
Isotopic depth stratification and relative abundance studies of planktic foraminifera at ODP Site 738 reveal three major faunal turnovers during the latest Paleocene and early Eocene, reflecting the climatic and structural changes in the Antarctic surface ocean. Faunal Event 1 occurred near the Paleocene/Eocene boundary and is characterized by a faunal turnover in deep dwellers, decreased relative abundance in intermediate dwellers and increased relative abundance in surface dwellers. This event marks a temporary elimination of the vertical structure in the surface ocean over a period of more than 63,000 years that is apparently associated with the sudden shutdown of the "Antarctic Intermediate Water" production. The appearance of morozovellids before this event suggests that polar warming is the cause for the shutdown in the production of this water mass. At this time warm saline deep water may have formed at low latitudes. Faunal Event 2 occurred near the AP5a/AP5b Subzonal boundary and is characterized by a faunal turnover in deep dwellers with no apparent change in surface and intermediate dwellers. Increased individual size, wall-thickness and relative abundance in deep dwelling chiloguembelinids suggests the formation of a deep oxygen minima in the Antarctic Oceans during the maximum polar warming possibly as a result of upwelling of nutrient-rich deep water. Faunal Event 3 occurred in Subzone AP6 and is characterized by a faunal turnover in surface dwellers and a delayed diversification in deep dwellers. This event marks the onset of Antarctic cooling. A drastic decrease in the delta13C/delta18O values of the deep assemblage in Zone AP7 suggests an intensified thermocline and reduced upwelling following the polar cooling.
Resumo:
Over most of the Gulf of Mexico and Caribbean a hiatus is present between the lower upper Maastrichtian and lowermost Tertiary deposits; sedimentation resumed ~200 ka (upper zone Pla) after the K-T boundary. Current-bedded volcaniclastic sedimentary rocks at Deep Sea Drilling Project (DSDP) Sites 536 and 540, which were previously interpreted as impact-generated megawave deposits of K-T boundary age, are biostratigraphically of pre-K-T boundary age and probably represent turbidite or gravity-How deposits. The top 10 to 20 cm of this deposit at Site 536 contains very rare Micula prinsii, the uppermost Maastrichtian index taxon, as well as low values of Ir (0.6 pbb) and rare Ni-rich spinels. These indicate possible reworking of sediments of K-T boundary age at the hiatus. Absence of continuous sediment accumulation across the K-T boundary in the 16 Gulf of Mexico and Caribbean sections examined prevents their providing evidence of impact-generated megawave deposits in this region. Our study indicates that the most complete trans-K-T stratigraphic records may be found in onshore marine sections of Mexico, Cuba, and Haiti. The stratigraphic records of these areas should be investigated further for evidence of impact deposits.
Resumo:
A virtually complete composite history of Cenozoic pelagic sedimentation was recovered from ODP Sites 738 (62°43' S) and 744 (61°35' S), drilled during Leg 119 on the Kerguelen Plateau. An excellent magnetobiochronologic record was obtained from upper Eocene through Holocene sediments at Site 744, and an expanded lower Paleocene through lower Oligocene sequence was cored at Hole 738. Analysis of the stratigraphic distribution of over 125 planktonic foraminifer taxa from these sites reveals changes in species composition that were strongly influenced by the climatic evolution of Antarctic water masses. Early Paleocene planktonic foraminifer assemblages are nearly identical in species composition to coeval assemblages from low and middle latitude sites, showing the same patterns of post-extinction recovery and taxonomic radiation. Biogeographic isolation, revealed by the absence of tropical keeled species, became apparent by late early Paleocene time. Diversity increased near the Paleocene/Eocene boundary when keeled morozovellids immigrated to the Kerguelen Plateau. Greatest diversity (23 species) was achieved by early Eocene time, corresponding to a Cenozoic warming maximum that has been recognized in lower Eocene deep sea and terrestrial sediments worldwide. A gradual decline in diversity from the late early through middle Eocene, primarily due to the disappearance of acarininids, parallels the record of cooling paleotemperatures in Southern Ocean surface waters. Chiloguembelina-dominated assemblages appeared in the late middle Eocene and persisted through the early Oligocene as Antarctic surface waters became thermally isolated. Late Eocene and early Oligocene assemblages exhibit considerably lower diversity than the older Eocene faunas, and were dominated by chiloguembelinids, subbotinids, and catapsydracids during a time of pronounced climatic cooling and development of continental glaciation on East Antarctica. The small foraminifer Globigerinit? juvenilis replaced chiloguembelinids as the dominant taxon during the late Oligocene. Diversity increased slightly toward the end of the late Oligocene with new appearances of several tenuitellid, globoturborotalitid, and globigerinid species. The trend toward diminishing planktonic foraminifer diversity was renewed during the late early Miocene as siliceous productivity increased in the Antarctic surface waters, culminating with the reduction to nearly monospecific assemblages of Neogloboqu?drin? p?chyderm? that occur in Pliocene-Holocene biosiliceous sediments. An Antarctic Paleogene zonal scheme previously devised for ODP Sites 689 and 690 in the Weddell Sea is used to biostratigraphically subdivide the Kerguelen Plateau sequence. The definition of one Antarctic Paleogene biozone is modified in the present study to facilitate correlation within the southern high latitudes. The ages of 13 late Eoceneearly Miocene datum events are calibrated based on a magnetobiochronologic age model developed for Site 744.