4 resultados para Ortoferritas
Resumo:
Orthoferrites AFeO3 (A = rare earth) are an important class of perovskite oxides that exhibit weak ferromagnetism. These materials find numerous applications as chemical sensors, cathodes for fuel cells and catalysis, which make them interesting from the standpoint of science and technology. Their structural, electrical and magnetic properties are dependent on many factors such as the preparation method, heat treatment conditions, chemical composition and replacement of cations in sites A and/or B. In this paper, LaFe1-xMnxO3 (0 ≤ x ≤ 1) orthoferrites-type was prepared by Pechini method and Microwave-assisted combustion reaction in order to evaluate the influence of synthesis route on the formation of oxide, as well as the effect of parcial replacement of iron by manganese and heat treatment on the magnetic properties. The precursor powders were calcined at 700°C, 900°C, 1100°C and 1300°C for 4 hours and they were characterized by the techniques: Thermogravimetric analysis (TGA), X ray diffraction (XRD), Refinement by Rietveld method, Scanning electron microscopy (SEM), Reduction temperature programmed (RTP) and Magnetic hysteresis measurements performed at room temperature. According to the XRD patterns, the formation of perovskite phase with orthorhombic structure was observed for the systems where 0 ≤ x ≤ 0.5 and rhombohedral for x = 1. The results also showed a decrease of lattice parameters with the parcial replacement of iron by manganese and consequently a reduction in cell volume. The hysteresis curves exhibited weak ferromagnetism for the systems prepared by both synthesis methods. However, a dependence of magnetization as a function of dopant content was observed for samples produced by Pechini method. As for the systems prepared by combustion reaction, it was found that the secondary phases exert a strong influence on the magnetic behavior
Resumo:
Samples of lanthanum Ortoferrites doped with strontium were synthesized in a single phase by the sol-gel method. Two samples were prepared, one by varying the concentration of strontium in lanthanum ortoferrites La1−xSrxFeO3−δ with (0 ≤ x ≤ 0.5), and another batch of samples of type, La1/3Sr2/3FeO3−δ, now varying only the temperature of calcination. Our samples were obtained by Pechini method and sintered in air and oxygen atmospheric. Their crystal structures were determined by x-ray diraction (XRD), scanning electron microscopy (SEM), where we observed that the samples (0 ≤ x ≤ 0.3) have orthorhombic symmetry and the volume of the single cell decreases with the increasing of concentration of strontium. For x = 0.5 it is only observed the simple phase when that is sintered in O2 atmospheric. Their magnetic characteristics were obtained by the Mössbauer spectroscopy and magnetic measurements. The magnetization measurements for samples La1−xSrxFeO3−δ with (0 ≤ x ≤ 0.5) revealed that the magnetization decreases with increasing concentration of strontium, but for the sample x = 0.4 the magnetization shows a high coercive field and a ferrimagnetic behavior, which is attributed to a small amount of strontium hexaferrite. As for the samples La1/3Sr2/3FeO3−δ calcined between 800 oC e 1200 oC. The hysteresis curves revealed two distinct behaviors: an declined antiferromagnetic behavior (Canted) for samples calcined between 800 oC and 1000 oC and a paramagnetic behavior for the samples calcined at 1100 oC e 1200 o C. Thermal hysteresis and sharp peaks around the Néel temperature (TN), over the curves of specific heat as a function of temperature was only observed in calcined samples with 1100 oC and 1200 oC. This eect is attributed to the charge ordering. These results indicate that the charge ordering occurs only in the samples without oxygen deficiency. Magnetic measurements as a function of temperature are also in agreement with this interpretation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)