966 resultados para Orthopaedic implants


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fate of vitamin E and the formation and identification of its transformation products were investigated at different stages of the manufacturing process of commercially produced cross-linked (by γ-irradiation) UHMWPE stabilised with vitamin E (vitamin E infused-post irradiation) used for tibia-components (as articulating surfaces) in total knee arthroplasty (total knee replacement). Vitamin E (α-tocopherol) and its transformation products were extracted from microtomed Tibia films and the different products were separated, isolated, purified using high performance liquid chromatography (HPLC), and characterised by spectroscopic methods and LC-MS. The amount of vitamin E and that of the products formed in the different Tibia samples and in their extracts were also quantified using FTIR and HPLC analysis and calibration curves. Thorough analysis of the Tibia extracts has shown that a number of vitamin E transformation products were formed at different concentrations at two selected stages of the implant manufacturing process that is before and after sterilisation by γ-irradiation. The identified products were found to correspond mainly to different stereoisomeric forms of a small number of vitamin E transformation products. Most of the observed products were of dimeric and trimeric nature with their identity confirmed through a detailed study of their spectral and chromatographic characteristics. It was found that the products of vitamin E, prior to the sterilisation step but after the crosslinking and doping of vitamin E, were mainly the dihydroxydimers and trimers (Tibia samples at this stage are referred to as “Tibia-VEPE”). After sterilisation and completion of the manufacturing process, additional dimers of vitamin E were also formed (Tibia samples at this stage are referred to as ‘Tibia-VEPE-Sterile’), Furthermore, two tocopherol-derived aldehydes (aldehyde 5-formyl-γ-tocopherol and aldehyde 7-formyl-γ-tocopherol) were also formed but at very low concentrations especially in the Tibia-VEPE-Sterile samples. The question of whether vitamin E becomes chemically reacted (grafted) onto the polymer matrix during the manufacturing process of the Tibia is also addressed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wear of polyethylene is associated with aseptic loosening of orthopaedic implants and has been observed in hip and knee prostheses and anatomical implants for the shoulder. The reversed shoulder prostheses have not been assessed as yet. We investigated the volumetric polyethylene wear of the reversed and anatomical Aequalis shoulder prostheses using a mathematical musculoskeletal model. Movement and joint stability were achieved by EMG-controlled activation of the muscles. A non-constant wear factor was considered. Simulated activities of daily living were estimated from in vivo recorded data. After one year of use, the volumetric wear was 8.4 mm(3) for the anatomical prosthesis, but 44.6 mm(3) for the reversed version. For the anatomical prosthesis the predictions for contact pressure and wear were consistent with biomechanical and clinical data. The abrasive wear of the polyethylene in reversed prostheses should not be underestimated, and further analysis, both experimental and clinical, is required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advances in implant design, surgical technique, peri-operative antimicrobial prophylaxis and laminar airflow operating room environment have made total joint arthroplasty one of the most successful surgical procedures of all times. Orthopaedic implants, however, remain prone to microbial contamination resulting in persistent risk of implant-associated infection. Treatment of infections associated with orthopaedic devices usually requires appropriate surgical intervention combined with a prolonged antimicrobial therapy. The choice of the best possible treatment regimen depends on duration and pathogenesis of infection, stability of the implant, antimicrobial susceptibility of the pathogen and condition of the surrounding soft tissue. In addition towell known diagnostic procedures new promising tools for rapid and correct microbial diagnosis are being developed as correct diagnosis of the responsible micro-organism and this is paramount for successful treatment of prosthetic joint infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiostereometric analysis (RSA) is a highly accurate method for the measurement of in vivo micromotion of orthopaedic implants. Validation of the RSA method is a prerequisite for performing clinical RSA studies. Only a limited number of studies have utilised the RSA method in the evaluation of migration and inducible micromotion during fracture healing. Volar plate fixation of distal radial fractures has increased in popularity. There is still very little prospective randomised evidence supporting the use of these implants over other treatments. The aim of this study was to investigate the precision, accuracy, and feasibility of using RSA in the evaluation of healing in distal radius fractures treated with a volar fixed-angle plate. A physical phantom model was used to validate the RSA method for simple distal radius fractures. A computer simulation model was then used to validate the RSA method for more complex interfragmentary motion in intra-articular fractures. A separate pre-clinical investigation was performed in order to evaluate the possibility of using novel resorbable markers for RSA. Based on the validation studies, a prospective RSA cohort study of fifteen patients with plated AO type-C distal radius fractures with a 1-year follow-up was performed. RSA was shown to be highly accurate and precise in the measurement of fracture micromotion using both physical and computer simulated models of distal radius fractures. Resorbable RSA markers demonstrated potential for use in RSA. The RSA method was found to have a high clinical precision. The fractures underwent significant translational and rotational migration during the first two weeks after surgery, but not thereafter. Maximal grip caused significant translational and rotational interfragmentary micromotion. This inducible micromotion was detectable up to eighteen weeks, even after the achievement of radiographic union. The application of RSA in the measurement of fracture fragment migration and inducible interfragmentary micromotion in AO type-C distal radius fractures is feasible but technically demanding. RSA may be a unique tool in defining the progress of fracture union.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis summarizes the results on the growth and characterisation of thin films of HA grown on TiAl6V4 (Ti) implant material at a lower substrate temperature by a combination of Pulsed laser deposition and a hydrothermal treatment to get sufficiently strong crystalline films suitable for orthopaedic applications. The comparison of the properties of the coated substrate has been made with other surface modification techniques like anodization and chemical etching. The in-vitro study has been conducted on the surface modified implants to assess its cell viability. A molecular level study has been conducted to analyze the adhesion mechanism of protein adhesion molecules on to HA coated implants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Nanoparticulate silver coatings for orthopaedic implants promise to decrease postoperative infection rates. However, silver-induced cytotoxicity on bone cells has not been investigated in detail. This study investigated the cytotoxic effects of silver nano- and microparticles and Ag(+) on osteoblasts (OBs) and osteoclasts (OCs) and correlated their effects with the antibacterial efficacy on Staphylococcus epidermidis. Silver nanoparticles (50 nm) exhibited strong cytotoxic effects on OBs and OCs. Weak cytotoxic effects were observed for silver microparticles (3 μm). The cytotoxicity was primarily mediated by a size-dependent release of Ag(+). Antibacterial effects occurred at Ag(+) concentrations that were 2-4 times higher than those inducing cytotoxic effects. Such adverse effects on OB and OC survival may have deleterious effects on the biocompatibility of orthopaedic implants. Our study represents an important step toward the detailed investigation of orthopaedic implant with nanoparticulate silver coatings prior to their widespread clinical usage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a framework for statistical finite element analysis combining shape and material properties, and allowing performing statistical statements of biomechanical performance across a given population. In this paper, we focus on the design of orthopaedic implants that fit a maximum percentage of the target population, both in terms of geometry and biomechanical stability. CT scans of the bone under consideration are registered non-rigidly to obtain correspondences in position and intensity between them. A statistical model of shape and intensity (bone density) is computed by means of principal component analysis. Afterwards, finite element analysis (FEA) is performed to analyse the biomechanical performance of the bones. Realistic forces are applied on the bones and the resulting displacement and bone stress distribution are calculated. The mechanical behaviour of different PCA bone instances is compared.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports the use of X-ray photoelectron spectroscopy (XPS) to investigate bisphosphonate (BP) adsorption onto plasma sprayed hydroxyapatite (HA) coatings commonly used for orthopaedic implants. BPs exhibit high binding affinity for the calcium present in HA and hence can be adsorbed onto HA-coated implants to exploit their beneficial properties for improved bone growth at the implant interface. A rigorous XPS analysis of pamidronate, a commonly used nitrogenous BP, adsorbed onto plasma sprayed HA-coated cobalt-chromium substrates has been carried out, aimed at: (a) confirming the adsorption of this BP onto HA; (b) studying the BP diffusion profile in the HA coating by employing the technique of XPS depth profiling; (c) confirming the bioactivity of the adsorbed BR XPS spectra of plasma sprayed HA-coated discs exposed to a 10 mM aqueous BP solution (pamidronate) for periods of 1, 2 and 24 h showed nitrogen and phosphorous photoelectron signals corresponding to the BP confirming its adsorption onto the HA substrate. XPS depth profiling of the 2 h BP-exposed HA discs showed penetration of the BP into the HA matrix to depths of at least 260 nm. The bioactivity of the adsorbed BP was confirmed by the observed inhibition of osteoclast (bone resorbing) cell activity. In comparison to the HA sample, the HA sample with adsorbed BP exhibited a 25-fold decrease in primary osteoclast cells. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introducción: La osteonecrosis de los maxilares ha sido descrita en pacientes que toman bifosfonatos y han sido sometidos a cirugía dentoalveolar. Actualmente, la terapia con bifosfonatos e implantes dentales es un tratamiento muy común en adultos. Objetivos: Evaluar, a través de una revisión de la literatura, si la osteointegración del implante dental podría disminuir en pacientes que toman bifosfonatos orales o intravenosos. Además, se analiza el riesgo que tienen estos pacientes de desarrollar osteonecrosis de los maxilares. Material y métodos: Se realizó una búsqueda a través de la base de datos Medline (PubMed) de los artículos publicados en inglés en los últimos 15 años que incluyeran las palabras clave "bisphosphonates and dental implants", "bisphosphonates and orthopaedic implants" y "osteonecrosis of the jaws and dental implants". Conclusiones: El tratamiento con bifosfonatos no disminuye la osteointegración del implante dental, aunque estos resultados se han obtenido en base a estudios retrospectivos en humanos. Se han descrito casos de osteonecrosis de los maxilares relacionada con bifosfonatos en estos pacientes, sobre todo tras tratamiento prolongado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(aryl-ether-ether-ketone) (PEEK) is a semi crystalline polymer which exhibits properties that make it an attractive choice for use as an implant material. It displays natural radiolucency, and MRI compatibility, as well as good chemical and sterilization resistance, both of which make it of particular interest in orthopaedic implants. However, PEEK has demonstrated poor cellular adhesion both in vitro and in vivo. This is problematic as implant surfaces that do not develop a layer of adhesive cells are at risk of undergoing fibrous encapsulation, which in turn leads to lack of a strong interface between the implant device and the patient tissue, which can in turn lead to failure of the implant and revision surgery . As incorporating nanotopography into a polymer surface has been demonstrated to be able to direct the differentiation behaviour of stem cells, a possible solution to PEEKs underlying issues with poor cellular response would be to incorporate specific nanoscale topography into the material surface through injection moulding, and then analysing if this is a viable method for addressing PEEKs issues with cellular response. In addition to nanoscale topography, the experimental PEEK surfaces were treated with oxygen plasma to address the underlying cytophobicity of the material. As this type of treatment has been documented to be capable of etching the PEEK surface, experiments were carried out to quantify the effect of this treatment, both on the ability of cells to adhere to the PEEK surface, as well as the effect it has upon the nanotopography present at the PEEK surface. The results demonstrated that there were a range of plasma treatments which would significantly improve the ability of cells to adhere to the PEEK surface without causing unacceptable damage to the nanotopography. Three different types of cells with osteogenic capacity were tested with the PEEK surfaces to gauge the ability of the topography to alter their behaviour: SAOS-2, osteoprogenitors and 271+ MSCs. Due to PEEKs material properties (it is non transparent, exhibits birefringence and is strongly autofluorescent) a number of histological techniques were used to investigate a number of different stages that take place in osteogenesis. The different cell types did display slightly different responses to the topographies. The SAOS-2 cells cultured on surfaces that had been plasma treated for 2 minutes at 200W had statistically significantly higher levels of von Kossa staining on the NSQ surface compared to the planar surface, and the same experiment employing alizarin red staining, showed a statistically significantly lower level of staining on the SQ surface compared to the planar surface. Using primary osteoprogenitor cells designed to look into if whether or not the presence of nanotopography effected the osteogenic response of these cells, we saw a lack of statistically significant difference produced by the surfaces investigated. By utilising HRP based immunostaining, we were able to investigate, in a quantitative fashion, the production of the two osteogenic markers osteopontin and osteocalcin by cells. When stained for osteocalcin, the SQ nanotopography had total percentage of the surface with stained material, average area and average perimeter all statistically significantly lower than the planar surface. For the cells that were stained for osteopontin, the SQ nanotopgraphy had a total percentage of the surface with stained material, average area and average perimeter all highly statistically significantly lower than those of the planar surface. Additionally, for this marker the NSQ nanotopography had average areas and average perimeters that were highly significantly higher than those of the planar surface. There were no significant differences for any of the values investigated for the 271+ MSC’s When plasma treatment was varied, the SAOS-2 cells demonstrated an overall trend i.e. increasing the energy of plasma treatment in turn leads to an increase in the overall percentage of staining. A similar experiment employing stem cells isolated from human bone marrow instead of SAOS-2 cells showed that for polycarbonate surfaces , used as a control, mineralization is statistically significantly higher on the NSQ nanopattern compared to the planar surface, whereas on the PEEK surfaces we observe the opposite trend i.e. the NSQ nanotopography having a statistically significantly lower amount of mineralization compared to the planar surface at the 200W 2min and 30W 1min plasma treatments. The standout trend from the PEEK results in this experiment was that the statistically significant differences on the PEEK substrates were clustered around the lower energy plasma treatments, which could suggest that the plasma treatment disrupted a function of the nanotopograhy which is why, as the energy increases, there are less statistically significant differences between the NSQ nanotopography and the Planar surface This thesis documents the response of a number of different types of cells to specific nanoscale topographies incorporated into the PEEK surface which had been treated with oxygen plasma. It outlines the development of a number of histological methods which measure different aspects of osteogenesis, and were selected to both work with PEEK, and produce quantitative results through the use of Cell Profiler. The methods that have been employed in this body of work would be of interest to other researchers working with this material, as well as those working with similarly autofluorescent materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Infections associated with implants are increasingly important in modem medicine. Biofilms are the cause that these infections are more difficult to diagnose and to cure. Particularly low-grade infections are difficult to distinguish from aseptic failure, because they often present with early loosening and persisting pain. For an accurate diagnosis, clinical signs and symptoms, laboratory markers of infection, microbiology, histology and imaging examinations are needed. The treatment goal is eradication of infection and an optimal functional result. Successful treatment requires adequate surgical procedure combined with long-term antimicrobial therapy, ideally with an agent acting on biofilms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium alloys are hoped to be used much more for applications as implant materials in the medical and dental fields because of their basic properties, such as biocompatibility, corrosion resistance and specific strength compared with other metallic implant materials. Thus, the Ti-6Al-7Nb alloy that has recently been developed for biomedical use, that is, primarily developed for orthopaedic use, is to be studied in this paper, for application in dental implants. The biocompatibility test in vivo was carried out in dogs and the osseointegration was verified through histological analysis of the samples of the Ti-6Al-7Nb alloy with and without hydroxyapatite coating that were inserted in the alveoli. Within the controlled conditions the samples did not show any toxic effects on the cells. (C) 2001 Kluwer Academic Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a new population-based method for the design of bone fixation plates. Standard pre-contoured plates are designed based on the mean shape of a certain population. We propose a computational process to design implants while reducing the amount of required intra-operative shaping, thus reducing the mechanical stresses applied to the plate. A bending and torsion model was used to measure and minimize the necessary intra-operative deformation. The method was applied and validated on a population of 200 femurs that was further augmented with a statistical shape model. The obtained results showed substantial reduction in the bending and torsion needed to shape the new design into any bone in the population when compared to the standard mean-based plates.