28 resultados para Orthokeratology
Resumo:
Purpose: To investigate the effect of orthokeratology on peripheral aberrations in two myopic volunteers. Methods: The subjects wore reverse geometry orthokeratology lenses overnight and were monitored for 2 weeks of wear. They underwent corneal topography, peripheral refraction (out to ±34° along the horizontal visual field) and peripheral aberration measurements across the 42° × 32° central visual field using a modified Hartmann-Shack aberrometer. Results: Spherical equivalent refraction was corrected for the central 25° of the visual fields beyond which it gradually returned to its preorthokeratology values. There were increases in axial coma, spherical aberration, higher order root mean square aberrations, and total root-mean-squared aberrations (excluding defocus). The rates of change of vertical and horizontal coma across the field changed in sign. Total root mean square aberrations showed a quadratic rate of change across the visual field which was greater subsequent to orthokeratology. Conclusion: Although orthokeratology can correct peripheral relative hypermetropia it induces dramatic increases in higher-order aberrations across the field
Resumo:
Quantifying adaptation to light distortion of subjects undergoing orthokeratology (OK) for myopia during the first month of treatment. Twenty-nine healthy volunteers (age: 22.34 ± 8.08 years) with mean spherical equivalent refractive error −2.10 ± 0.93D were evaluated at baseline and days 1, 7, 15, and 30 of OK treatment. Light distortion was determined using an experimental prototype. Corneal aberrations were derived from corneal topography for different pupil sizes. Contrast sensitivity function (CSF) was analyzed for frequencies of 1.50, 2.12, 3.00, 4.24, 6.00, 8.49, 12.00, 16.97, and 24.00 cpd under photopic conditions.
Resumo:
2.134 JCR (2015) Q3, 74/124 Medicine, research & experimental, 81/161 Biotechnology & applied microbiology
Resumo:
PURPOSE. To compare axial length growth between white children with myopia wearing orthokeratology contact lenses (OK) and distance single-vision spectacles (SV) over a 2-year period. METHODS. Subjects 6 to 12 years of age with myopia -0.75 to -4.00 diopters of sphere (DS) and astigmatism ≤1.00 diopters of cylinder (DC) were prospectively allocated OK or SV correction. Measurements of axial length (Zeiss IOLMaster), corneal topography, and cycloplegic refraction were taken at 6-month intervals. RESULTS. Thirty-one children were fitted with OK and 30 with SV. Following 24 months, axial length increased significantly over time for both the OK group (0.47 mm) and SV group (0.69 mm; P < 0.001), with a significant interaction between time and group (P = 0.05) reflecting a greater increase in the SV group. Significant differences in refraction were found over time, between groups and for the interaction between time and group for spherical (all P < 0.001) but not cylindrical components of refraction (all P > 0.05). Significantly greater corneal flattening was evident in the OK group for the flatter and steeper corneal powers and for corneal shape factor (all P ≤0.05). CONCLUSIONS. Orthokeratology contact lens wear reduces axial elongation in comparison to distance single-vision spectacles in children. © 2012 The Association for Research in Vision and Ophthalmology, Inc.
Resumo:
Purpose. To assess the relative clinical success of orthokeratology contact lenses (OK) and distance single-vision spectacles (SV) in children in terms of incidences of adverse events and discontinuations over a 2-year period. Methods. Sixty-one subjects 6 to 12 years of age with myopia of - 0.75 to - 4.00DS and astigmatism =1.00DC were prospectively allocated OK or SV correction. Subjects were followed at 6-month intervals and advised to report to the clinic immediately should adverse events occur. Adverse events were categorized into serious, significant, and non-significant. Discontinuation was defined as cessation of lens wear for the remainder of the study. Results. Thirty-one children were corrected with OK and 30 with SV. A higher incidence of adverse events was found with OK compared with SV (p < 0.001). Nine OK subjects experienced 16 adverse events (7 significant and 9 non-significant). No adverse events were found in the SV group. Most adverse events were found between 6 and 12 months of lens wear, with 11 solely attributable to OK wear. Significantly more discontinuations were found with SV in comparison with OK (p < 0.05). Conclusions. The relatively low incidence of adverse events and discontinuations with OK is conducive for the correction of myopia in children with OK contact lenses.
Resumo:
PURPOSE: To examine which baseline measurements constitute predictive factors for axial length growth over 2 years in children wearing orthokeratology contact lenses (OK) and single-vision spectacles (SV). METHODS: Sixty-one children were prospectively assigned to wear either OK (n = 31) or SV (n = 30) for 2 years. The primary outcome measure (dependent variable) was axial length change at 2 years relative to baseline. Other measurements (independent variables) were age, age of myopia onset, gender, myopia progression 2 years before baseline and baseline myopia, anterior chamber depth, corneal power and shape (p value), and iris and pupil diameters as well as parental refraction. The contribution of all independent variables to the 2-year change in axial length was assessed using univariate and multivariate regression analyses. RESULTS: After univariate analyses, smaller increases in axial length were found in the OK group compared to the SV group in children who were older, had earlier onset of myopia, were female, had lower rate of myopia progression before baseline, had less myopia at baseline, had longer anterior chamber depth, had greater corneal power, had more prolate corneal shape, had larger iris diameter, had larger pupil sizes, and had lower levels of parental myopia (all p < 0.05). In multivariate analyses, older age and greater corneal power were associated with smaller increases in axial length in the OK group (both p < 0.05), whereas in SV wearers, smaller iris diameter was associated with smaller increases in axial length (p = 0.021). CONCLUSIONS: Orthokeratology is a successful treatment option in controlling axial elongation compared to SV in children of older age, had earlier onset of myopia, were female, had lower rate of myopia progression before baseline, had lower myopia at baseline, had longer anterior chamber depth, had greater corneal power, had more prolate corneal shape, had larger iris and pupil diameters, and had lower levels of parental myopia. © American Academy of Optometry.
Resumo:
Purpose: To compare vision-related quality-of-life measures between children wearing orthokeratology (OK) contact lenses and distance single-vision (SV) spectacles. Methods: Subjects 6 to 12 years of age and with myopia of -0.75 to -4.00 diopters and astigmatism less than or equal to 1.00 diopters were prospectively assigned OK contact lens or SV spectacle correction. A pediatric refractive error profile questionnaire was administered at 12- and 24-month intervals to evaluate children's perceptions in terms of overall vision, near vision, far distance vision, symptoms, appearance, satisfaction, activities, academic performance, handling, and peer perceptions. The mean score of all items was calculated as the overall score. Additionally, parents/guardians were asked to rate their child's mode of visual correction and their intention to continue treatment after study completion. Results: Thirty-one children were fitted with OK contact lenses and 30 with SV spectacles. Children wearing OK contact lenses rated overall vision, far distance vision, symptoms, appearance, satisfaction, activities, academic performance, handling, peer perceptions, and the overall score significantly better than children wearing SV spectacles (all P<0.05). Near vision and handling were, respectively, rated better (P<0.001) and similar (P=0.44) for SV spectacles in comparison to OK contact lenses. No significant differences were found between 12 and 24 months for any of the subjective ratings assessed (all P>0.05). Parents/guardians of children wearing OK contact lenses rated visual correction method and intention to continue treatment higher than parents of children wearing SV spectacles (P=0.01). Conclusion: The results indicate that the significant improvement in vision-related quality of life and acceptability with OK contact lenses is an incentive to engage in its use for the control of myopia in children.
Resumo:
OBJECTIVE: To assess refractive and biometric changes 1 week after discontinuation of lens wear in subjects who had been wearing orthokeratology (OK) contact lenses for 2 years. METHODS: Twenty-nine subjects aged 6 to 12 years and with myopia of -0.75 to -4.00 diopters (D) and astigmatism of ≤1.00 D participated in the study. Measurements of axial length and anterior chamber depth (Zeiss IOLMaster), corneal power and shape, and cycloplegic refraction were taken 1 week after discontinuation and compared with those at baseline and after 24 months of lens wear. RESULTS: A hyperopic shift was found at 24 months relative to baseline in spherical equivalent refractive error (+1.86±1.01 D), followed by a myopic shift at 1 week relative to 24 months (-1.93±0.92 D) (both P<0.001). Longer axial lengths were found at 24 months and 1 week in comparison to baseline (0.47±0.18 and 0.51±0.18 mm, respectively) (both P<0.001). The increase in axial length at 1 week relative to 24 months was statistically significant (0.04±0.06 mm; P=0.006). Anterior chamber depth did not change significantly over time (P=0.31). Significant differences were found between 24 months and 1 week relative to baseline and between 1-week and 24-month visits in mean corneal power (-1.68±0.80, -0.44±0.32, and 1.23±0.70 D, respectively) (all P≤0.001). Refractive change at 1 week in comparison to 24 months strongly correlated with changes in corneal power (r=-0.88; P<0.001) but not with axial length changes (r=-0.09; P=0.66). Corneal shape changed significantly between the baseline and 1-week visits (0.15±0.10 D; P<0.001). Corneal shape changed from a prolate to a more oblate corneal shape at the 24-month and 1-week visits in comparison to baseline (both P≤0.02) but did not change significantly between 24 months and 1 week (P=0.06). CONCLUSIONS: The effects of long-term OK on ocular biometry and refraction are still present after 1-week discontinuation of lens wear. Refractive change after discontinuation of long-term OK is primarily attributed to the recovery of corneal shape and not to an increase in the axial length.
Resumo:
Background: The aim was to assess the potential association between entrance pupil location relative to the coaxially sighted corneal light reflex (CSCLR) and the progression of myopia in children fitted with orthokeratology (OK) contact lenses. Additionally, whether coma aberration induced by decentration of the entrance pupil centre relative to the CSCLR, as well as following OK treatment, is correlated with the progression of myopia, was also investigated. Methods: Twenty-nine subjects aged six to 12years and with myopia of -0.75 to -4.00 DS and astigmatism up to 1.00DC were fitted with OK contact lenses. Measurements of axial length and corneal topography were taken at six-month intervals over a two-year period. Additionally, baseline and three-month topographic outputs were taken as representative of the pre- and post-orthokeratology treatment status. Pupil centration relative to the CSCLR and magnitude of associated corneal coma were derived from corneal topographic data at baseline and after three months of lens wear. Results: The centre of the entrance pupil was located superio-temporally to the CSCLR both pre- (0.09±0.14 and -0.10±0.15mm, respectively) and post-orthokeratology (0.12±0.18 and -0.09±0.15mm, respectively) (p>0.05). Entrance pupil location pre- and post-orthokeratology lens wear was not significantly associated with the two-year change in axial length (p>0.05). Significantly greater coma was found at the entrance pupil centre compared with CSCLR both pre- and post-orthokeratology lens wear (both p<0.05). A significant increase in vertical coma was found with OK lens wear compared to baseline (p<0.001) but total root mean square (RMS) coma was not associated with the change in axial length (all p>0.05). Conclusion: Entrance pupil location relative to the CSCLR was not significantly affected by either OK lens wear or an increase in axial length. Greater magnitude coma aberrations found at the entrance pupil centre in comparison to the CSCLR might be attributed to centration of orthokeratological treatments at the CSCLR.
Resumo:
PURPOSE: To assess the correlation between changes in corneal aberrations and the 2-year change in axial length in children fitted with orthokeratology (OK) contact lenses. METHODS: Thirty-one subjects 6 to 12 years of age and with myopia −0.75 to −4.00DS and astigmatism ≤1.00DC were fitted with OK. Measurements of axial length and corneal topography were taken at regular intervals over a 2-year period. Corneal topography at baseline and after 3 and 24 months of OK lens wear was used to derive higher-order corneal aberrations (HOA) that were correlated with OK-induced axial length changes at 2 years. RESULTS: Significant changes in C3, C4, C4, root mean square (RMS) secondary astigmatism and fourth and total HOA were found with both 3 and 24 months of OK lens wear in comparison with baseline (all P0.05). Coma angle of orientation changed significantly pre-OK in comparison with 3 and 24 months post-OK as well as secondary astigmatism angle of orientation pre-OK in comparison with 24 months post-OK (all P0.05). DISCUSSION: Short-term and long-term OK lens wear induces significant changes in corneal aberrations that are not significantly correlated with changes in axial elongation after 2-years.
Resumo:
Objective: To evaluate the differences between goblet cell density (GCD) and symptomatology after one month of orthokeratology lens wear. Methods: A pilot, short-term study was conducted. Twenty-two subjects (29.7. ±. 7.0 years old) participated voluntarily in the study. Subjects were divided into two groups: habitual silicone hydrogel contact lens wearers (SiHCLW) and new contact lens wearers (NCLW). Schirmer test, tear break up time (TBUT), Ocular Surface Disease Index (OSDI) questionnaire and conjunctival impression cytology. GCD, mucin cloud height (MCH) and cell layer thickness (CLT) were measured. All measurements were performed before orthokeratology fitting and one month after fitting to assess the evolution of the changes throughout this time. Results: No differences in tear volume and TBUT between groups were found (p>0.05). However, the OSDI score was statistically better after one month of orthokeratology lens wear than the baseline for the SiHCLW group (p=0.03). Regarding the goblet cell analysis, no differences were found in CLT and MCH from the baseline visit to the one month visit for the SiHCLW compared with NCLW groups (p>0.05). At baseline, the GCD in the SiHCLW group were statistically lower than NCLW group (p<0.001). There was a significant increase in GCD after orthokeratology fitting from 121±140cell/mm2 to 254±130cell/mm2 (p<0.001) in the SiHCLW group. Conclusion: Orthokeratology improves the dry eye subject symptoms and GCD after one month of wearing in SiHCLW. These results suggest that orthokeratology could be considered a good alternative for silicone hydrogel contact lens discomfort and dryness. © 2016 British Contact Lens Association.
Resumo:
Purpose.: To evaluate the levels of dinucleotides diadenosine tetraphosphate (Ap4A) and diadenosine pentaphosphate (Ap5A) in tears of patients wearing rigid gas permeable (RGP) contact lenses on a daily wear basis and of patients wearing reverse-geometry RGP lenses overnight for orthokeratology treatment. Methods.: Twenty-two young volunteers (10 females, 12 males; 23.47 ± 4.49 years) were fitted with an alignment-fit RGP lens (paflufocon B) for a month, and after a 15-day washout period they were fitted with reverse-geometry RGP lenses for corneal reshaping (paflufocon D) for another month. During each period, tears were collected at baseline day 1, 7, 15, and 28. Ap4A and Ap5A were measured by high-pressure liquid chromatography (HPLC). Additionally, corneal staining, break-up time (BUT), Schirmer test, and dryness symptoms were evaluated. Results.: Ap4A concentrations increased significantly from baseline during the whole period of daily wear of RGP lenses (P < 0.001); concentration was also significantly higher than in the orthokeratology group, which remained at baseline levels during the study period except at day 1 (P < 0.001) and day 28 (P = 0.041). While BUT and Schirmer remained unchanged in both groups, discomfort and dryness were significantly increased during alignment-fit RGP daily wear but not during the orthokeratology period. Conclusions.: Daily wear of RGP lenses increased the levels of Ap4A due to mechanical stimulation by blinking of the corneal epithelium, and this is associated with discomfort. Also, orthokeratology did not produce symptoms or signs of ocular dryness, which could be a potential advantage over soft contact lenses in terms of contact lens-induced dryness.
Resumo:
Purpose: The primary outcome of this study is to compare the axial length growth of white European myopic children wearing orthokeratology contact lenses (OK) to a control group (CT) over a 7-year period. Methods: Subjects 6–12 years of age with myopia −0.75 to −4.00DS and astigmatism ≤1.00DC were prospectively allocated OK or distance single-vision spectacles (SV) correction. Measurements of axial length (Zeiss IOLMaster), corneal topography, and cycloplegic refraction were taken at 6-month intervals over a 2-year period. Subjects were invited to return to the clinic approximately 5 years later (i.e., 7 years after the beginning of the study) for assessment of their ocular refractive and biometric components. The CT consisted of 4 SV and 12 subjects who switched from SV to soft contact lens wear after the initial 2 years of SV lens wear. Changes in axial length relative to baseline over a 7-year period were compared between groups. Results: Fourteen and 16 subjects from the OK and CT groups, respectively, were examined 6.7 ± 0.5 years after the beginning of the study. Statistically significant changes in the axial length were found over time and between groups (both p <0.001), but not for the time*group interaction (p = 0.125). The change in the axial length for the OK group was 22% (p = 0.328), 42% (p = 0.007), 40% (p = 0.020), 41% (p = 0.013), and 33% (p = 0.062) lower than the CT group following 6, 12, 18, 24, and 84 months of lens wear, respectively. Conclusion: A trend toward a reduction in the rate of axial elongation of the order of 33% was found in the OK group in comparison to the CT group following 7 years of lens wear.