998 resultados para Origin of life


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early in its history, Earth's surface developed from an uninhabitable magma ocean to a place where life could emerge. The first organisms, lacking ion transporters, fixed the composition of their cradle environment in their intracellular fluid. Later, though life adapted and spread, it preserved some qualities of its initial environment within. Modern prokaryotes could thus provide insights into the conditions of early Earth and the requirements for the emergence of life. In this work, we constrain Earth's life-forming environment through detailed analysis of prokaryotic intracellular fluid. Rigorous assessment of the constraints placed on the early Earth environment by intracellular liquid will provide insight into the conditions of abiogenesis, with implications not only for our understanding of early Earth but also the formation of life elsewhere in the Universe. Copyright © 2013, Mary Ann Liebert, Inc. 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineral surfaces were important during the emergence of life on Earth because the assembly of the necessary complex biomolecules by random collisions in dilute aqueous solutions is implausible. Most silicate mineral surfaces are hydrophilic and organophobic and unsuitable for catalytic reactions, but some silica-rich surfaces of partly dealuminated feldspars and zeolites are organophilic and potentially catalytic. Weathered alkali feldspar crystals from granitic rocks at Shap, north west England, contain abundant tubular etch pits, typically 0.4–0.6 μm wide, forming an orthogonal honeycomb network in a surface zone 50 μm thick, with 2–3 × 106 intersections per mm2 of crystal surface. Surviving metamorphic rocks demonstrate that granites and acidic surface water were present on the Earth’s surface by ∼3.8 Ga. By analogy with Shap granite, honeycombed feldspar has considerable potential as a natural catalytic surface for the start of biochemical evolution. Biomolecules should have become available by catalysis of amino acids, etc. The honeycomb would have provided access to various mineral inclusions in the feldspar, particularly apatite and oxides, which contain phosphorus and transition metals necessary for energetic life. The organized environment would have protected complex molecules from dispersion into dilute solutions, from hydrolysis, and from UV radiation. Sub-micrometer tubes in the honeycomb might have acted as rudimentary cell walls for proto-organisms, which ultimately evolved a lipid lid giving further shelter from the hostile outside environment. A lid would finally have become a complete cell wall permitting detachment and flotation in primordial “soup.” Etch features on weathered alkali feldspar from Shap match the shape of overlying soil bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A main unsolved problem in the RNA world scenario for the origin of life is how a template-dependent RNA polymerase ribozyme emerged from short RNA oligomers generated by random polymerization of ribonucleotides (Joyce and Orgel 2006). Current estimates establish a minimum size about 165 nt long for such a ribozyme (Johnston et al. 2001), a length three to four times that of the longest RNA oligomers obtained by random polymerization on clay mineral surfaces (Huang and Ferris 2003, 2006). To overcome this gap, we have developed a stepwise model of ligation-based, modular evolution of RNA (Briones et al. 2009) whose main conceptual steps are summarized in Figure 1. This scenario has two main advantages with respect to previous hypotheses put forward for the origin of the RNA world: i) short RNA....

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This computer simulation is based on a model of the origin of life proposed by H. Kuhn and J. Waser, where the evolution of short molecular strands is assumed to take place in a distinct spatiotemporal structured environment. In their model, the prebiotic situation is strongly simplified to grasp essential features of the evolution of the genetic apparatus without attempts to trace the historic path. With the tool of computer implementation confining to principle aspects and focused on critical features of the model, a deeper understanding of the model's premises is achieved. Each generation consists of three steps: (i) construction of devices (entities exposed to selection) presently available; (ii) selection; and (iii) multiplication of the isolated strands (R oligomers) by complementary copying with occasional variation by copying mismatch. In the beginning, the devices are single strands with random sequences; later, increasingly complex aggregates of strands form devices such as a hairpin-assembler device which develop in favorable cases. A monomers interlink by binding to the hairpin-assembler device, and a translation machinery, called the hairpin-assembler-enzyme device, emerges, which translates the sequence of R1 and R2 monomers in the assembler strand to the sequence of A1 and A2 monomers in the A oligomer, working as an enzyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A symbiosis-based phylogeny leads to a consistent, useful classification system for all life. "Kingdoms" and "Domains" are replaced by biological names for the most inclusive taxa: Prokarya (bacteria) and Eukarya (symbiosis-derived nucleated organisms). The earliest Eukarya, anaerobic mastigotes, hypothetically originated from permanent whole-cell fusion between members of Archaea (e.g., Thermoplasma-like organisms) and of Eubacteria (e.g., Spirochaeta-like organisms). Molecular biology, life-history, and fossil record evidence support the reunification of bacteria as Prokarya while subdividing Eukarya into uniquely defined subtaxa: Protoctista, Animalia, Fungi, and Plantae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

pt. I. Cleopatra and Cæsar.--pt. II. Cleopatra and Antony.