993 resultados para Organometallic compounds - Electrochemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the axial organic ligand R on the electrochemical oxidation of the compounds [RCoIII(salen)DMF)], where salen is bis(salicylaldehyde)ethylenediimine, and R CH3, C2H5, n-C3H7, n-C4H9, s-C4H9, i-C4H9, CH2Cl, CF3CH2, c-C6H11CH2, c-C6H11, C6H5, C6H5CH2, p-CH3C6H4CH2, and p-NO2C6H4CH2, was studied by means of cyclic voltametry in dimethylformamide (DMF), 0.2 M in tetraethylammonium perchlorate (TEAP), at 25 and -20°C, with a platinum disc working electrode. The above-mentioned compounds can be classified according to their electrochemical behavior. (a) The complexes with R CH3, C2H5, n-C3H7, n-C4H9, c-C6H11CH2, and C6H5 undergo a reversible one-electron oxidation in the 10-50 V s-1 potential scan range. At slower scan rates, the oxidized product decomposes chemically. At -20°C, this chemical step is slow, and a reversible one-electron electrochemical oxidation is observed. (b) The compounds with R CH2Cl, C6H5CH2, p-CH3C6H4CH2 and p-NO2C6H4CH2 undergo a quasi-reversible one-electron oxidation at room temperaure. At -20°C, the electrochemical process becomes more complex. A following chemical reactions is coupled to the quasi-reversible one-electron transfer. Two reduction peaks are observed. (c) The compounds with R i-C4H9, s-C4H9, and c-C6H11 undergo a reversible one-electron oxidation at -20°C. At room temperature, the irreversible chemical reaction following the electron transfer step is too fast to allow the isolation of the electrochemical step. (d) At -20°C, the derivatives with R C2H5, c-C6H11 CH2 and c-C6H11 are adsorbed at the electrode surface. Evidence indicates that the reagent in these reactions is the pentacoordinated species [RCoIII(salen)]. A linear free-energy relationship between E1/2 (for reversible processes) and the Taft polar parameters o* was obtained with a slope of ρ* = 0.25 ± 0.03. As expected, the benzyl derivatives which present mesomeric effects do not fit this polar correlation. The rated of the electrochemical oxidation is also affected by the nature of the ligand R. For the ligands which are strong electron-withdrawing groups and for the benzyl derivatives, the rate of the electrochemical oxidation of the metal ion decreases at room temperature. At lower temperatures, it is suggested that the oxidation to the CoIV-R species is followed by a chemical reaction in which this complex is partly transformed into a CoIII(R*) species, which is reduced at a much more cathodic potential than the Co(IV) species. © 1979.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the equatorial ligand on the electrochemical oxidation of the compounds [H3CCo(chel)B], where chel is bis (dimethylglyoximato), (DH)2; bis(salicylaldehyde)ethylenediimine, salen; bis(salicylaldehyde) o-phenylenediimine, salophen; bis(salicylaldehyde)cyclohexylenediimine, salcn; bis(acetylacetone) ethylenediimine, bae; and where B is pyridine when chel is (DH2), and dimethylformamide (DMF) when chel represents a Schiff base (salen, salcn, salophen and bae), was studied by means of cyclic voltammetry in DMF, 0.2 M in tetraethylammonium perchlorate, between 25 and -25°C, with a platinum disk working electrode. Absorption spectra in the visible and near ultraviolet regions for these compounds in DMF at 25°C were obtained. The complexes exhibit a reversible one-electron oxidation, at -20°C with scan rates >0.5 V s-; chemical reactions following electron transfer are not detected under these conditions. At slower potential or higher temperatures, the oxidized product decomposes chemically in a solvent-assisted (or nucleophile-assisted) reaction, yielding products which are electroactive in the applied potential range. The behavior of the [H3CCo (DH2)py] derivative is better described as a quasi-reversible charge transfer followed by an irreversible chemical reaction. Experimental evidence suggests that in the case of the [H3CCo(bae)] derivative at -20°C, the reactive -species is pentacoordinated and weakly adsorbed at the electrode surface. The value of E 1 2 and the energies of the first two absorption bands in the visible spectra reveal the ability of the studied complexes to donate and to delocalize electronic charge. © 1982.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical oxidation of some p-substituted benzylic derivatives of Co(III) dimethylglyoximato and Co(III)bis(salicylaldehydc)o-phenylenediimine in dimethylformamide. 0.2 M in tetraethyammonium perchlorate, on a platinum electrode, at several temperatures, is described as an ECE type, the first electrochemical step being a quasi-reversible one-electron charge transfer at room temperature. At temperatures around -20°C, or lower, the influence of the irreversible chemical decomposition of the oxidized species, via a solvent or other nucleophilic-assisted reaction, is negligible. It is suggested that at low temperatures the oxidation to the formally CoIV-R species is followed by an isomerization reaction in which this complex is partially transformed in a CoIII-(R) species or a s π-complex which undergoes an electroreduction at less positive potentials than those corresponding to the reduction of the CoIV-R species. © 1982.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organometallic compounds have recently found applications in medicinal chemistry and as diagnostic tools in chemical biology. Naturally occurring biomolecules, viz., cobalamine, NiFe hydrogenase, Acetyl-CoA synthase, etc., also contain metal-carbon bonds. Among organometallic compounds having medicinal importance, (arene)ruthenium complexes, radioactive technetium complexes and ferrocene conjugates are notable ones. Applications of photoactive organometallic complexes or metal complexes conjugated with an organometallic moiety are of recent origin. Photodynamic therapy (PDT) is a promising method to treat cancer cells in presence of light. This review primarily focuses on different aspects of the chemistry of organometallic complexes showing photocytotoxic activities. Half-sandwich tungsten, iron or ruthenium complexes are known to show photonuclease and/or photo-crosslinking activity. Photoinduced organometallic CO releasing molecules also exert photocytotoxic activity. Attempts have been made in this review to highlight the photocytotoxic behavior of various metal complexes when conjugated with a photoactive organometallic moiety, viz., ferrocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach for attaching well-dispersed cobalt nanoparticles homogeneously onto carbon nanotubes via metal organic chemical vapor deposition technique is reported. The obtained Co/CNTs catalysts feature a narrow size distribution of Co particles centering around 7.5 nm, and show high activity and regioselectivity for hydroformylation of 1-octene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the reaction of SnMe2Cl2 with adenosine, guanosine and inosine in aqueous solution at pH 4.5. The nucleosides give probably polymeric species in which there is monodentate coordination to O2′ of the ribose ring as indicated by 80 MHz PMR.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reactions of group 16 heterocycles with organometallic reagents are described. Thiophenes have been used as models for organic sulfur in coal and their reactivity towards triiron dodecacarbonyl has been investigated. Reaction of unsubstituted thiophene with Fe3(CO)12 results in desulfurisation of the heterocycle, with the organic fragment being recovered in the form of the ferrole, C4H4.Fe2(CO)6. In addition a novel organometallic compound of iron is isolated, the formula of which is shown to be C4H4.Fe3(CO)8. Bezothiophene reacts with Fe3(CO)12 to yield benzothiaferrole, C8H6S.Fe2(CO)6, in which the sulfur is retained in the heterocycle. Dibenzothiophene, a more accurate model for organic sulfur in coal, displays no reactivity towards the iron carbonyl, suggesting that the more condensed systems will desulfurise less readily. Microwave methodology has been successful in accelerating the reactions of thiophenes with Fe3(CO)12. However, reaction of benzothiophene does not proceed to the desulfurisation stage while dibenzothiophene is unreactive even under microwave conditions. Tellurophenes (Te analogues of thiophenes) are shown to mimic the behaviour of thiophenes towards certain organometallic reagents with the advantage that their greater reactivity enables recovery of products in higher yields. Hence, reaction of tellurophene with Fe3(CO)12 again affords the ferrole but with an almost ten-fold increase in yield over thiophene. More significantly, dibenzotellurophene is also detellurated by the iron carbonyl affording the previously inaccessible dibenzoferrole, C12H8.Fe2(CO)6, thereby demonstrating the mechanistic feasibility of dechalcogenation of the more condensed aromatic molecules. The potential of tellurium heterocycles to act as precursors for novel organometallics is also recognised owing to the relatively facile elimination of the heteroatom from these systems. Thus, 2-telluraindane reacts with Fe3(CO)12 to yield a novel organometallic compound of formula C16H16.Fe(CO)3, arising from the unsymmetric dimerisation of two organic fragments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Organometallic compounds are building blocks for materials with applications in catalysis, pharmaceutical production and molecular sensors. Research presented in this thesis focused on the design and synthesis of compounds with supramolecular architectures. Crystal engineering these new compounds provides the basis for the next generation of advanced materials required by industry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The oxidative electrochemistry of [CpFe(CO)2]2, 1 (Cp = [η5-C5H5]–), was examined in detail in ionic liquids (ILs) composed of ions of widely varying Lewis acid−base properties. Cyclic voltammetric responses were strongly dependent on the nucleophilic properties of the IL anion, but all observations are consistent with the initial formation of 1+ followed by attack from the IL anion. In [NTf2]–-based ILs ([NTf2]– = bis(trifluoromethylsulfonyl)amide), the process shows nearly ideal chemical reversibility as the reaction between 1+ and [NTf2]– is very slow. This is highly significant, as 1+ is known to be highly susceptible to nucleophilic attack and its stability indicates a remarkable lack of coordinating ability of these ILs. In 1-methyl-3-butylimidazolium hexafluorophosphate, [bmim][PF6], the oxidation of 1 is still largely reversible, but there is more pronounced evidence of [PF6]– coordination. In contrast, 1 exhibits an irreversible two-electron oxidation process in a dicyanamide-based IL. This overall oxidation process is thought to proceed via an ECE mechanism, details of which are presented. Rate constants were estimated by fitting the experimental data to digital simulations of the proposed mechanism. The use of [NTf2]–-based ILs as a supporting electrolyte in CH2Cl2 was examined by using this solvent/electrolyte as a medium in which to perform bulk electrolyses of 1 and 1*, the permethylated analogue [Cp*Fe(CO)2]2 (Cp* = [η5-C5(CH3)5]–). These cleanly yielded the corresponding binuclear radical-cation species, 1+ and 1*+, which were subsequently characterized by electron paramagnetic resonance (EPR) spectroscopy. In addition to the above oxidation studies, the reduction of 1 was studied in each of the ILs; differences in cathodic peak potentials are attributed, in part, to ion-pairing effects. This study illustrates the wide range of electrochemical environments available with ILs and demonstrates their utility for the investigation of the redox properties of metal carbonyls and other organometallic compounds.