915 resultados para Organofluorine compounds - Toxicology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The existence of three centered C=O...H(N)...X-C hydrogen bonds (H-bonds) involving organic fluorine and other halogens in diphenyloxamide derivatives has been explored by NMR spectroscopy and quantum theoretical studies. The three centered H-bond with the participation of a rotating CF3 group and the F...H-N intramolecular hydrogen bonds, a rare observation of its kind in organofluorine compounds, has been detected. It is also unambiguously established by a number of one and two dimensional NMR experiments, such as temperature perturbation, solvent titration, N-15-H-1 HSQC, and F-19-H-1 HOESY, and is also confirmed by theoretical calculations, such as quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) and non-covalent interaction (NCI).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reaction of tris(pentafluorophenyl)phosphine [5] with the nucleophiles dimethyl formamide (DMF), hexamethylphosphoric triamide (HMPA), diethyl formamide (DEF), hexaethylphosphoric triamide (HEPA), hydrazine, N,N-dimethyl hydrazine (in presence and/or absence of KF), phenylhydrazine, ammonium hydroxide, formamide, aniline, sodium hydrogen sulfide, and hexaethylphosphorous triamide was investigated. The reaction of [5] with DMF and HMPA gave the same product, namely tris-[4-(N,N-dimethylamino)-2,3,5,6-tetrafluorophenyl]phosphine [12] but in higher yield in the case of HMPA. Compound (5] also reacted with DEF to give tris[4-(N,N-diethylamino)-2,3,5,6-tetrafluorophenyl] phosphine [14]. When [51 was treated with HEPA, it gave a mixture of bis(pentafluorophe~yl)-(N,N-diethylamino-tetrafluorophenyl)phosphine, pentafluorophenyl-bis-(N,N-diethylamino-tetrafluorophenyl)phosphine and tris (N,N-diethylamino-tetrafluorophenyl)phosphine. Treatment of [5] with aqueeus hydrazine solution in excess ethanol gave tris(4-hydrazo-2,3,4,6-tetrafluorophenyl)phosphine [1s1 in high yield while reaction with aqueous hydrazine led to C-P cleavage and production of tetrafluorophenyl hydrazine. With N,N-dimethyl hydrazine, [5] gave tris(4-N,N-dimethylhydrazine-2,3,5,6-tetrafluorophenyl) phosphine {20j. The latter could be obtained in higher yield and shorter reaction time, by the addition of KF. The reaction of compound {51 with phenylhydrazine in THF gave bis(pentafluorophe~yl)-4-S-phenylhydrazino- 2,3,5,6-tetrafluorophenyl phosphine [22] in low yield. Reaction of [5] with ammonium hydroxide in THF at high pressure in the presence of KF gave tris-~4-amino-2,3,5,6-tetrafluorophenyl)phosphine [25]. Similarly, formamide led to a mixture of (C6F4NHZ)3P, (C6F4NHZ)ZPC6FS, (C6F4NHZ)ZPC6F4NHCHO, and C6F4NHZP(C6Fs)(C6F4NHCHO). When [5] was treated with aniline, a mixture of mono-, di-, and tri-substituted products was obtained. Sodium hydrogen sulfide in ethylene glycol/ pyridine led to C-P cleavage and the isolation of pentafluorobenzene and tetrafluorothiophenol. Reaction of [5] and its oxide [35] with different alkoxides in the corresponding alcohols led mainly to C-P bond cleavage products, with the exception of one case where sodium methoxide was used in ether, and which led to tris-(4-methoxy-2,3,9,6-tetrafluorophenyl)phosphine [37]. On the basis of various spectroscopic data, it was concluded that the para position in compound [5] was generally the favoured site of attack.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inherited genetic traits co-determine the susceptibility of an individual to a toxic chemical. Special emphasis has been put on individual responses to environmental and industrial carcinogens, but other chronic diseases are of increasing interest. Polymorphisms of relevant xenobiotic metabolising enzymes may be used as toxicological susceptibility markers. A growing number of genes encoding enzymes involved in biotransformation of toxicants and in cellular defence against toxicant-induced damage to the cells has been identified and cloned, leading to increased knowledge of allelic variants of genes and genetic defects that may result in a differential susceptibility toward environmental toxicants. "Low penetrating" polymorphisms in metabolism genes tend to be much more common in the population than allelic variants of "high penetrating" cancer genes, and are therefore of considerable importance from a public health point of view. Positive associations between cancer and CYP1A1 alleles, in particular the *2C I462V allele, were found for tissues following the aerodigestive tract. Again, in most cases, the effect of the variant CYP1A1 allele becomes apparent or clearer in connection with the GSTM1 null allele. The CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squameous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has also pointed to interactive effects. Of particular interest for the industrial and environmental field is the isozyme CYP2E1. Several genotypes of this isozyme have been characterised which seem to be associated with different levels of expression of enzyme activity. The acetylator status for NAT2 can be determined by genotyping or by phenotyping. In the pathogenesis of human bladder cancer due to occupational exposure to "classical" aromatic amines (benzidine, 4-aminodiphenyl, 1-naphthylamine) acetylation by NAT2 is regarded as a detoxication step. Interestingly, the underlying European findings of a higher susceptibility of slow acetylators towards aromatic amines are in contrast to findings in Chinese workers occupationally exposed to aromatic amines which points to different mechanisms of susceptibility between European and Chinese populations. Regarding human bladder cancer, the hypothesis has been put forward that genetic polymorphism of GSTM1 might be linked with the occurrence of this tumour type. This supports the hypothesis that exposure to PAH might causally be involved in urothelial cancers. The human polymorphic GST catalysing conjugation of halomethanes, dihalomethanes, ethylene oxide and a number of other industrial compounds could be characterised as a class theta enzyme (GSTT1) by means of molecular biology. "Conjugator" and "non-conjugator" phenotypes are coincident with the presence and absence of the GSTT1 gene. There are wide variations in the frequencies of GSTT1 deletion (GSTT1 *0/0) among different ethnicities. Human phenotyping is facilitated by the GST activity towards methyl bromide or ethylene oxide in erythrocytes which is representative of the metabolic GSTT1 competence of the entire organism. Inter-individual variations in xenobiotic metabolism capacities may be due to polymorphisms of the genes coding for the enzymes themselves or of the genes coding for the receptors or transcription factors which regulate the expression of the enzymes. Also, polymorphisms in several regions of genes may cause altered ligand affinity, transactivation activity or expression levels of the receptor subsequently influencing the expression of the downstream target genes. Studies of individual susceptibility to toxicants and gene-environment interaction are now emerging as an important component of molecular epidemiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson´s disease (PD) is a debilitating age-related neurological disorder that affects various motor skills and can lead to a loss of cognitive functions. The motor symptoms are the result of the progressive degeneration of dopaminergic neurons within the substantia nigra. The factors that influence the pathogenesis and the progression of the neurodegeneration remain mostly unclear. This study investigated the role of various programmed cell death (PCD) pathways, oxidative stress, and glial cells both in dopaminergic neurodegeneration and in the protective action of various drugs. To this end, we exposed dopaminergic neuroblastoma cells (SH-SY5Y cells) to 6-OHDA, which produces oxidative stress and activates various PCD modalities that result in neuronal degeneration. Additionally, to explore the role of glia, we prepared rat midbrain primary mixed-cell cultures containing both neurons and glial cell types such as microglia and astroglia and then exposed the cultures to either MPP plus or lipopolysaccharide. Our results revealed that 6-OHDA activated several PCD pathways including apoptosis, autophagic stress, lysosomal membrane permeabilization, and perhaps paraptosis in SH-SY5Y cells. Furthermore, we found that minocycline protected SH-SY5Y cells from 6-OHDA by inhibiting both apoptotic and non-apoptotic PCD modalities. We also observed an inconsistent neuroprotective effect of various dietary anti-oxidant compounds against 6-OHDA toxicity in vitro in SH-SY5Y cells. Specifically, quercetin and curcumin exerted neuroprotection only within a narrow concentration range and a limited time frame, whereas resveratrol and epigallocatechin 3-gallate provided no protection whatsoever. Lastly, we found that molecules such as amantadine may delay or even halt the neurodegeneration in primary cell cultures by inhibiting the release of neurotoxic factors from overactivated microglia and by enhancing the pro-survival actions of astroglia. Together these data suggest that the strategy of dampening oxidative species with anti-oxidants is less effective than preventing the production of toxic factors such as oxidative and pro-inflammatory molecules by pathologically activated microglia. This would subsequently prevent the activation of various PCD modalities that cause neuronal degeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyfluorinated and perfluorinated compounds (PFCs) are used in numerous commercial products and have been ubiquitously detected in the environment as well as in the blood of humans and wildlife. To assess the combined effects caused by PFCs in mixtures, gene expression profiles were generated using a custom cDNA microarray to detect changes in primary cultured hepatocytes of rare minnows exposed to six individual PFCs (perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluorododecanoic acid, perfluorooctane sulfonate, and 8:2 fluorotelomer alcohol) and four formulations of the PFCs mixtures. Mixtures as well as individual compounds consistently regulated a particular gene set, which suggests that these conserved genes may play a central role in the toxicity mediated by PFCs. Specifically, a number of genes regulated by the mixtures were identified in this study, which were not affected by exposure to any single component. These genes are implicated in multiple biological functions and processes, including fatty acid metabolism and transport, xenobiotic metabolism, immune responses, and oxidative stress. More than 80% of the altered genes in the PFOA- and PFOS-dominant mixture groups were of the same gene set, while the gene expression profiles from single PFOA and PFOS exposures were not as similar. This work contributes to the development of toxicogenomic approaches in combined toxicity assessment and allows for comprehensive insights into the combined action of PFCs mixtures in multiple environmental matrices. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The seasonal variations of estrogenic compounds and the estrogenicities of influent and effluent were investigated by OF chemical analysis and in vitro assay in a municipal sewage treatment plant in Wuhan (China). The levels of eight estrogenic compounds, including 17 beta-estradiol (E-2) estrone (E-1), estriol (E-3) diethylstilbestrol (DES), 17 alpha-ethinylestradiol, nonylphenol (NP), 4-tert-octylphenol (OP), and bisphenol A (BPA), were measured by gas chromatography-mass spectrometry. Total estrogenic activity of sewage was quantitatively assessed using primary cultured hepatocytes of male Megalobrama amblycephala Yih using vitellogenin as a biomarker. The E-2 equivalents (EEQs) obtained from the chemical analysis were consistent with those measured by bioassay. The natural (E-1, E-2, and E-3) and synthetic (DES) estrogens, as well as NP, were the main contributors of the total EEQs of influent and effluent in the present study. The levels of natural estrogens E-1 and E-3 in the influent and effluent were higher in winter than in summer, whereas the situation for NP and OP was the reverse. The levels of E-2, DES, and BPA varied little among different seasons. 17 alpha-Ethinylestradiol was not detected in the influent and effluent. The estrogenicities of the influent and of the primary and secondary effluents were all higher in summer than in winter. Estrogenic activities in winter mainly originated from natural (E-1, E-2, and E-3) and synthetic (DES) estrogens, whereas the increase of EEQs in summer was contributed by NP The results from chemical analysis and bioassay demonstrate that estrogenic compounds cannot be entirely removed by the existing sewage treatment process, which should be further improved to protect aquatic ecosystems and human health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytological and biochemical alterations of crucial carp (Carassius auratus) hepatocytes were characterized after exposure to sediments from a lake contaminated with dioxins and other industrial chemicals. Carp were exposed in 20 L water containing 25, 50, or 100 g of contaminated sediment for 2 and 4 weeks. Ultrastructural changes in the liver were characterized by severe enlargement of hepatocytes. Alterations in the cell. included formation of condensed and irregular cell nucleus, polynuclei, dispersed heterochromatin, enlargement of the nucleolus, and degeneration of the nucleus. Mitochondrial numbers were reduced and cristae were deformed. Myelin figures and lysosomes were increased, and sometimes cell organelles and cell matrix were totally lost after 4 weeks of exposure. The ultrastructural alterations were correlated with exposure time and sediment concentrations. Hepatosometic index was significantly increased in experimental groups at 2 and 4 weeks as compared with the control group. EROD enzyme activities were strongly induced in liver. A trend from rough endoplasmic reticulum (RER) to SER was observed. Our results suggest that the dioxin-like compounds bound by sediment were bioavailable to C. auratus and cause sublethal effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrofuran antibiotic residues in food continue to be of international concern. The finding of sources of semicarbazide (SEM), other than through the misuse of nitrofurazone, present a challenge to the use of SEM as a definitive marker residue for this drug. Detection of intact (parent) nitrofurazone would avoid confusion over the source of SEM residues. Broiler chickens were fed sub-therapeutic nitrofuran-containing diets and their tissues were analysed for parent compounds and metabolites by liquid chromatography coupled with tandem mass spectrometry detection (LC-MS/MS). Depletion half-lives in muscle were longer for tissue-bound metabolite residues, 3.4 days - 3-amino-2-oxazolidinone (AOZ), 3-amino-5-morpholinomethyl-2-oxazolidone (AMOZ) - to 4.5 days (SEM), than total metabolite residues, 2.0 days (AOZ) to 3.2 days (SEM). Metabolite concentrations were higher in eyes than in muscle. Metabolite half-lives in eyes ranged from 8.5 days (1-aminohydantoin (AHD)) to 20.3 days (SEM). Nitrofuran parent compounds were also detected in eyes. Furaltadone was detected in single eyes after 21 days' withdrawal of a 6 mg kg -1 furaltadone diet. When 50 eyes from broilers containing metabolites in muscle close to the 1 µg kg -1 minimum required performance level (MRPL) were pooled into single samples, 1.2 ng of furazolidone and 31.1 ng of furaltadone were detected, but nitrofurazone was not detected due to the long depletion half-life of SEM in muscle. Further studies are required to improve LC-MS/MS nitrofurazone sensitivity and refine the sample size necessary to use nitrofurazone detection in pooled eyes as a complement to SEM detection in muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite considerable advances in reducing the production of dioxin-like toxicants in recent years, contamination of the food chain still occasionally occurs resulting in huge losses to the agri-food sector and risk to human health through exposure. Dioxin-like toxicity is exhibited by a range of stable and bioaccumulative compounds including polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), produced by certain types of combustion, and man-made coplanar polychlorinated biphenyls (PCBs), as found in electrical transformer oils. While dioxinergic compounds act by a common mode of action making exposure detection biomarker based techniques a potentially useful tool, the influence of co-contaminating toxicants on such approaches needs to be considered. To assess the impact of possible interactions, the biological responses of H4IIE cells to challenge by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in combination with PCB-52 and benzo-a-pyrene (BaP) were evaluated by a number of methods in this study. Ethoxyresorufin-O-deethylase (EROD) induction in TCDD exposed cells was suppressed by increasing concentrations of PCB-52, PCB-153, or BaP up to 10 mu M. BaP levels below 1 mu M suppressed TCDD stimulated EROD induction, but at higher concentrations, EROD induction was greater than the maximum observed when cells were treated with TCDD alone. A similar biphasic interaction of BaP with TCDD co-exposure was noted in the AlamarBlue assay and to a lesser extent with PCB-52. Surface enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF) profiling of peptidomic responses of cells exposed to compound combinations was compared. Cells co-exposed to TCDD in the presence of BaP or PCB-52 produced the most differentiated spectra with a substantial number of non-additive interactions observed. These findings suggest that interactions between dioxin and other toxicants create novel, additive, and non-additive effects, which may be more indicative of the types of responses seen in exposed animals than those of single exposures to the individual compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug development is being continuously scrutinised for its lack of productivity. Novel drug development is associated with high costs, high failure rates and lengthy development process. These downfalls combined with a huge demand in blood cancer for new therapeutic treatments have led many to consider the method of drug repurposing. Finding new therapeutic indications for already established drug substances is known as redirecting, repositioning, reprofiling, or repurposing of drugs. Off-patent and on-patent drugs can be screened for additional targets and new indications thus bringing them to clinical trials at a faster pace. This approach offers smaller research groups, such as those that are academic based, into the drug development industry. Drug repurposing can make use of previously published data concerning dosage, toxicology and mechanism of activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential (UNEP 2001). The majority of studies on endocrine disruption have focused on interferences on the sexual steroid hormones and so have overlooked disruption to glucocorticoid hormones. Here the endocrine disrupting potential of individual POPs and their mixtures has been investigated in vitro to identify any disruption to glucocorticoid nuclear receptor transcriptional activity. POP mixtures were screened for glucocorticoid receptor (GR) translocation using a GR redistribution assay (RA) on a CellInsight(TM) NXT High Content Screening (HCS) platform. A mammalian reporter gene assay (RGA) was then used to assess the individual POPs, and their mixtures, for effects on glucocorticoid nuclear receptor transactivation. POP mixtures did not induce GR translocation in the GR RA or produce an agonist response in the GR RGA. However, in the antagonist test, in the presence of cortisol, an individual POP, p,p'-dichlorodiphenyldichloroethylene (DDE), was found to decrease glucocorticoid nuclear receptor transcriptional activity to 72.5% (in comparison to the positive cortisol control). Enhanced nuclear transcriptional activity, in the presence of cortisol, was evident for the two lowest concentrations of perfluorodecanoic acid (PFOS) potassium salt (0.0147mg/ml and 0.0294mg/ml), the two highest concentrations of perfluorodecanoic acid (PFDA) (0.0025mg/ml and 0.005mg/ml) and the highest concentration of 2,2',4,4'-tetrabromodiphenyl ether (BDE 47) (0.0000858mg/ml). It is important to gain a better understanding of how POPs can interact with GRs as the disruption of glucocorticoid action is thought to contribute to complex diseases.