979 resultados para Organic polymers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two porous organic polymers decorated with the amide functionality were synthesized mechanochemically and their properties were compared with the ones prepared by conventional solution mediated method. All the POPs were subjected to gas and water vapor sorption studies. The mechanochemically synthesized POPs have less surface area and show moderate adsorption properties compared to the solution mediated POPs. The amide based POPs show remarkable stability in water and concentrated acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional inorganic materials for x-ray radiation sensors suffer from several drawbacks, including their inability to cover large curved areas, me- chanical sti ffness, lack of tissue-equivalence and toxicity. Semiconducting organic polymers represent an alternative and have been employed as di- rect photoconversion material in organic diodes. In contrast to inorganic detector materials, polymers allow low-cost and large area fabrication by sol- vent based methods. In addition their processing is compliant with fexible low-temperature substrates. Flexible and large-area detectors are needed for dosimetry in medical radiotherapy and security applications. The objective of my thesis is to achieve optimized organic polymer diodes for fexible, di- rect x-ray detectors. To this end polymer diodes based on two different semi- conducting polymers, polyvinylcarbazole (PVK) and poly(9,9-dioctyluorene) (PFO) have been fabricated. The diodes show state-of-the-art rectifying be- haviour and hole transport mobilities comparable to reference materials. In order to improve the X-ray stopping power, high-Z nanoparticle Bi2O3 or WO3 where added to realize a polymer-nanoparticle composite with opti- mized properities. X-ray detector characterization resulted in sensitivties of up to 14 uC/Gy/cm2 for PVK when diodes were operated in reverse. Addition of nanoparticles could further improve the performance and a maximum sensitivy of 19 uC/Gy/cm2 was obtained for the PFO diodes. Compared to the pure PFO diode this corresponds to a five-fold increase and thus highlights the potentiality of nanoparticles for polymer detector design. In- terestingly the pure polymer diodes showed an order of magnitude increase in sensitivity when operated in forward regime. The increase was attributed to a different detection mechanism based on the modulation of the diodes conductivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymers that are used in clinical practice as bone-defect-filling materials possess many essential qualities, such as moldability, mechanical strength and biodegradability, but they are neither osteoconductive nor osteoinductive. Osteoconductivity can be conferred by coating the material with a layer of calcium phosphate, which can be rendered osteoinductive by functionalizing it with an osteogenic agent. We wished to ascertain whether the morphological and physicochemical characteristics of unfunctionalized and bovine-serum-albumin (BSA)-functionalized calcium-phosphate coatings were influenced by the surface properties of polymeric carriers. The release kinetics of the protein were also investigated. Two sponge-like materials (Helistat® and Polyactive®) and two fibrous ones (Ethisorb and poly[lactic-co-glycolic acid]) were tested. The coating characteristics were evaluated using state-of-the-art methodologies. The release kinetics of BSA were monitored spectrophotometrically. The characteristics of the amorphous and the crystalline phases of the coatings were not influenced by either the surface chemistry or the surface geometry of the underlying polymer. The mechanism whereby BSA was incorporated into the crystalline layer and the rate of release of the truly incorporated depot were likewise unaffected by the nature of the polymeric carrier. Our biomimetic coating technique could be applied to either spongy or fibrous bone-defect-filling organic polymers, with a view to rendering them osteoconductive and osteoinductive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic substances, particularly polymers, are finding increasing use in modifying the properties of cements and concrete. Although a significant amount of research has been conducted into the modification of the mechanical properties of cements by polymers, little is known about the nature of the interface and interactions taking place between the two phases. This thesis addresses the problem of elucidating such interactions. Relevant literature is reviewed, covering the general use of polymers with cements, the chemistry of cements and polymers, adhesion and known interactions between polymers and both cements and related minerals. Although several polymer systems were studied, two in particular were selected, as being well characterized. These were: - 1) polymethyl methacrylate (PMMA), the polymer derived from methyl methacrylate (MMA), and 2) an amine-cured epoxy resin system. By this approach, a methodology was developed for the examination of other polymer/cement interactions. Experiments were conducted in five main areas:- 1) polymer-cement adhesion and the feasibility of revealing interfacial regions mechanically, 2) chemical reactions between polymers and cements, 3) characterization of cement adhesion surfaces, 4) interactions affecting overall polymerisation rates, and 5) studies of polymer impregnated cements. The following conclusions were reached:- 1) The PMMA/cement interface contains calcium methacrylate as an interfacial reaction product, water being a reactant. Calcium methacrylate is detrimental to the properties of PMMA/cement composites, being highly water-soluble. 2) The pore surface of cement accelerates the polymerisation of MMA, leading to an increased molecular weight compared to polymerisation of pure MMA, minerals in hydrated cement powders having the opposite effect. 3) The investigation of reaction products presents a number of experimental problems, selection of appropriate techniques depending upon the system studied. For the two systems examined in detail, ion chromatography proved particularly useful; DTA, IRS and XPS indicated reactions, though the data was hard to interpret; XRD proving inconclusive. 4) It is impractical to reveal interfacial regions mechanically, but may be accomplished by chemical means.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hexaphenylbiadamantane-based microporous organic polymers (MOPs) were successfully synthesized by Suzuki coupling under mild conditions. The obtained MOPs show high surface area (891 m2 g−1), ultra-high thermal (less than 40% mass loss at temperatures up to 1000 °C) and chemical (no apparent decomposition in organic solvents for more than 7 days) stability, gas (H2, CO2, CH4) capture capabilities and vapor (benzene, hexane) adsorption. These combined abilities render the synthesized MOPs an attractive candidate as thermo-chemically stable adsorbents for practical use in gas storage and pollutant vapor adsorption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new class of inorganic-organic hybrid polymers could successfully been prepared by the combination of different polymerization techniques. The access to a broad range of organic polymers incorporated into the hybrid polymer was realized using two independent approaches.rnIn the first approach a functional poly(silsesquioxane) (PSSQ) network was pre-formed, which was capable to initiate a controlled radical polymerization to graft organic vinyl-type monomers from the PSSQ precursor. As controlled radical polymerization techniques atom transfer radical polymerization (ATRP), as well as reversible addition fragmentation chain transfer (RAFT) polymerization could be used after defined tuning of the PSSQ precursor either toward a PSSQ macro-initiator or to a PSSQ macro-chain-transfer-agent. The polymerization pathway, consisting of polycondensation of trialkoxy-silanes followed by grafting-from polymerization of different monomers, allowed synthesis of various functional hybrid polymers. A controlled synthesis of the PSSQ precursors could successfully be performed using a microreactor setup; the molecular weight could be adjusted easily while the polydispersity index could be decreased well below 2.rnThe second approach aimed to incorporate differently derived organic polymers. As examples, polycarbonate and poly(ethylene glycol) were end-group-modified using trialkoxysilanes. After end-group-functionalization these organic polymers could be incorporated into a PSSQ network.rnThese different hybrid polymers showed extraordinary coating abilities. All polymers could be processed from solution by spin-coating or dip-coating. The high amount of reactive silanol moieties in the PSSQ part could be cross-linked after application by annealing at 130° for 1h. Not only cross-linking of the whole film was achieved, which resulted in mechanical interlocking with the substrate, also chemical bonds to metal or metal oxide surfaces were formed. All coating materials showed high stability and adhesion onto various underlying materials, reaching from metals (like steel or gold) and metal oxides (like glass) to plastics (like polycarbonate or polytetrafluoroethylene).rnAs the material and the synthetic pathway were very tolerant toward different functionalities, various functional monomers could be incorporated in the final coating material. The incorporation of N-isopropylacrylamide yielded in temperature-responsive surface coatings, whereas the incorporation of redox-active monomers allowed the preparation of semi-conductive coatings, capable to produce smooth hole-injection layers on transparent conductive electrodes used in optoelectronic devices.rnThe range of possible applications could be increased tremendously by incorporation of reactive monomers, capable to undergo fast and quantitative conversions by polymer-analogous reactions. For example, grafting active esters from a PSSQ precursor yielded a reactive surface coating after application onto numerous substrates. Just by dipping the coated substrate into a solution of a functionalized amine, the desired function could be immobilized at the interface as well as throughout the whole film. The obtained reactive surface coatings could be used as basis for different functional coatings for various applications. The conversion with specifically tuned amines yielded in surfaces with adjustable wetting behaviors, switchable wetting behaviors or as recognition element for surface-oriented bio-analytical devices. The combination of hybrid materials with orthogonal reactivities allowed for the first time the preparation of multi-reactive surfaces which could be functionalized sequentially with defined fractions of different groups at the interface. rnThe introduced concept to synthesis functional hybrid polymers unifies the main requirements on an ideal coating material. Strong adhesion on a wide range of underlying materials was achieved by secondary condensation of the PSSQ part, whereas the organic part allowed incorporation of various functionalities. Thus, a flexible platform to create functional and reactive surface coatings was achieved, which could be applied to different substrates. rn

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A copolymer comprising 1,4-diketopyrrolo[3,4-c]pyrrole (DPP) and thieno[3,2-b]thiophene moieties, PDBT-co-TT, shows high hole mobility of up to 0.94 cm2 V-1 s-1 in organic thin-film transistors. The strong intermolecular interactions originated from π-π stacking and donor-acceptor interaction lead to the formation of interconnected polymer networks having an ordered lamellar structure, which have established highly efficient pathways for charge carrier transport.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO - LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue → green → red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Organic solar cells show great promise as an economically and environmentally friendly technology to utilize solar energy because of their simple fabrication processes and minimal material usage. However, new innovations and breakthroughs are needed for organic solar cell technology to become competitive in the future. This article reviews research efforts and accomplishments focusing on three issues: power conversion efficiency, device stability and processability for mass production, followed by an outlook for optimizing OSC performance through device engineering and new architecture designs to realize next generation organic solar cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We initially look at the changing energy environment and how that can have a dramatic change on the potential of alternative energies, in particular those of organic photovoltaicvs (OPV) cells. In looking at OPV's we also address the aspects of where we are with the current art and why we may not be getting the best from our materials. In doing so, we propose the idea of changing how we build organic photovoltaics by addressing the best method to contain light within the devices. Our initial effort is in addressing how these microscale optical concentrators work in the form of optical fibers in terms of absorption. We have derived a mathematical method which takes account of the input angle of light to achieve optimum absorption. However, in doing so we also address the complex issue how the changing refractive indices in a multilayer device can alter how we input the light. We have found that by knowing the materials refractive index our model takes into account the incident plane, meridonal plane, cross sectional are and path length to ensure optical angular input. Secondly, we also address the practicalities of making such vertical structures the greater issue of changing light intensity incident on a solar cell and how that aspects alters how we view the performance of organic solar cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An experimental method is described which enables the inelastically scattered X-ray component to be removed from diffractometer data prior to radial density function analysis. At each scattering angle an energy spectrum is generated from a Si(Li) detector combined with a multi-channel analyser from which the coherently scattered component is separated. The data obtained from organic polymers has an improved signal/noise ratio at high values of scattering angle, and a commensurate enhancement of resolution of the RDF at low r is demonstrated for the case of PMMA (ICI `Perspex'). The method obviates the need for the complicated correction for multiple scattering.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two porous mixed valent diruthenium(II,III)-dicarboxylate compounds have been prepared and characterized by spectroscopic methods, X-ray diffraction and thermogravimetry. Crystalline solids of [Ru(2)(tere)(2)Cl] center dot 3.5H(2)O (tere=terephthalate) and [Ru(2)(adip)(2)Cl] center dot 1.5H(2)O (adip=adipate) consist of extended chains in which polymeric layers of multiply metal-metal bonded [Ru(2)](5+) cores are bridged by dicarboxylate ligands in paddlewheel type geometries. Units of [Ru(2)(dicarboxylate)(2)](n)(+) are linked by axial bridging chloride ions generating three-dimensional networks. The polymers loose non-bonded water molecules at low temperatures but do not undergo thermal decomposition below 280-300 degrees C. Both of compounds exhibit high BET surface areas, [Ru(2)(tere)(2)Cl]: 235 m(2) g(-1) and [Ru(2)(adip)(2)Cl]: 281 m(2) g(-1), and occlude similar numbers of mol of N(2) per mol of metal. The terephthalate ligand generated an organized structure with supermicropores (total pore size of 0.24 cm(3) g(-1)) while the adipate ligand led to a mesoporous structure (total pore sizes of 0.47 cm(3) g(-1)) for the corresponding diruthenium(II,III)-dicarboxylate polymers. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since conjugated polymers, i.e. polymers with spatially extended pi-bonding system have offered unique physical properties, unobtainable for conventional polymers, significant research efforts directed to better understanding of their chemistry, physics and engineering have been undertaken in the past two and half decades. In this thesis we discuss the synthesis, characterisation and investigation of conjugated semiconducting organic materials for electronic applications. Owing to the versatile properties of metal-organic hybrid materials, there is significant promise that these materials can find use in optical or electronic devices in the future. In addressing this issue, the synthesis of bisthiazol-2-yl-amine (BTA) based polymers is attempted and their metallation is investigated. The focus of this work has been to examine whether the introduction of coordinating metal ions onto the polymer backbone can enhance the conductivity of the material. These studies can provide a basis for understanding the photophysical properties of metal-organic polymers based on BTA. In their neutral (undoped) form conjugated polymers are semiconductors and can be used as active components of plastics electronics such as polymer light-emitting diodes, polymer lasers, photovoltaic cells, field-effect transistors, etc. Toward this goal, it is an objective of the study to synthesize and characterize new classes of luminescent polymeric materials based on anthracene and phenanthrene moieties. A series of materials based on polyphenylenes and poly(phenyleneethynylene)s with 9,10-anthrylene subunits are not only presented but the synthesis and characterization of step-ladder and ladder poly(p-phenylene-alt-anthrylene)s containing 9,10-anthrylene building groups within the main chain are also explored. In a separate work, a series of soluble poly-2,7- and 3,6-phenanthrylenes are synthesized. This can enable us to do a systematic investigation into the optical and electronic properties of PPP-like versus PPV-like. Besides, the self-organization of 3,6-linked macrocyclic triphenanthrylene has been investigated by 2D wide-angle X-ray scattering experiments performed on extruded filaments in solution and in the bulk. Additionally, from the concept that donor-acceptor materials can induce efficient electron transfer, the covalent incorporation of perylene tetracarboxydiimide (PDI) into one block of a poly(2,7-carbazole) (PCz)-based diblock copolymer and 2,5-pyrrole based on push-pull type material are achieved respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.