999 resultados para Organic islands
Resumo:
Sunken parcels of macroalgae and wood provide important oases of organic enrichment at the deep-sea floor, yet sediment community structure and succession around these habitat islands are poorly evaluated. We experimentally implanted 100-kg kelp falls and 200 kg wood falls at 1670 m depth in the Santa Cruz Basin to investigate (1) macrofaunal succession and (2) species overlap with nearby whale-fall and cold-seep communities over time scales of 0.25-5.5 yr. The abundance of infaunal macrobenthos was highly elevated after 0.25 and 0.5 yr near kelp parcels with decreased macrofaunal diversity and evenness within 0.5 m of the falls. Apparently opportunistic species (e.g., two new species of cumaceans) and sulfide tolerant microbial grazers (dorvilleid polychaetes) abounded after 0.25-0.5 yr. At wood falls, opportunistic cumaceans become abundant after 0.5 yr, but sulfide tolerant species only became abundant after 1.8-5.5 yr, in accordance with the much slower buildup of porewater sulfides at wood parcels compared with kelp falls. Species diversity decreased significantly over time in sediments adjacent to the wood parcels, most likely due to stress resulting from intense organic loading of nearby sediments (up to 20-30% organic carbon). Dorvilleid and ampharetid polychaetes were among the top-ranked fauna at wood parcels after 3.0-5.5 yr. Sediments around kelp and wood parcels provided low-intensity reducing conditions that sustain a limited chemoautrotrophically-based fauna. As a result, macrobenthic species overlap among kelp, wood, and other chemosynthetic habitats in the deep NE Pacific are primarily restricted to apparently sulfide tolerant species such as dorvilleid polychaetes, opportunistic cumaceans, and juvenile stages of chemosymbiont containing vesicomyid bivalves. We conclude that organically enriched sediments around wood falls may provide important habitat islands for the persistence and evolution of species dependent on organic- and sulfide-rich conditions at the deep-sea floor and contribute to beta and gamma diversity in deep-sea ecosystems. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Embedding metallic nanoparticles in organic solar cells can enhance the photoabsorption through light trapping processes. This paper investigates how gold islands obtained by annealing 1–5 nm thick Au layers affect the photoabsorption. Using finite-difference time-domain simulations, the cell efficiency for various island geometries and thicknesses are analyzed and the properties of the islands for maximal photocurrent are discussed. It is shown that a careful choice of size and concentration of gold islands could contribute to enhance the power conversion efficiencies when compared to standard organic solar cell devices. The conclusions are then compared to experimental data for thermally annealed gold islands in bulk heterojunction solar cells. The results of this paper will contribute to the optimization of plasmonic organic solar cell systems and will pave the way for the development of highly efficient organic solar cell devices.
Resumo:
Antarctic terrestrial ecosystems have poorly developed soils and currently experience one of the greatest rates of climate warming on the globe. We investigated the responsiveness of organic matter decomposition in Maritime Antarctic terrestrial ecosystems to climate change, using two study sites in the Antarctic Peninsula region (Anchorage Island, 67°S; Signy Island, 61°S), and contrasted the responses found with those at the cool temperate Falkland Islands (52°S). Our approach consisted of two complementary methods: (1) Laboratory measurements of decomposition at different temperatures (2, 6 and 10 °C) of plant material and soil organic matter from all three locations. (2) Field measurements at all three locations on the decomposition of soil organic matter, plant material and cellulose, both under natural conditions and under experimental warming (about 0.8 °C) achieved using open top chambers. Higher temperatures led to higher organic matter breakdown in the laboratory studies, indicating that decomposition in Maritime Antarctic terrestrial ecosystems is likely to increase with increasing soil temperatures. However, both laboratory and field studies showed that decomposition was more strongly influenced by local substratum characteristics (especially soil N availability) and plant functional type composition than by large-scale temperature differences. The very small responsiveness of organic matter decomposition in the field (experimental temperature increase <1 °C) compared with the laboratory (experimental increases of 4 or 8 °C) shows that substantial warming is required before significant effects can be detected.
Resumo:
Organic-organic heterojunctions are nowadays highly regarded materials for light-emitting diodes, field-effect transistors, and photovoltaic cells with the prospect of designing low-cost, flexible, and efficient electronic devices.1-3 However, the key parameter of optimized heterojunctions relies on the choice of the molecular compounds as well as on the morphology of the organic-organic interface,4 which thus requires fundamental studies. In this work, we investigated the deposition of C60 molecules at room temperature on an organic layer compound, the salt bis(benzylammonium)bis(oxalato)cupurate(II), by means of noncontact atomic force microscopy. Three-dimensional molecular islands of C60 having either triangular or hexagonal shapes are formed on the substrate following a "Volmer-Weber" type of growth. We demonstrate the dynamical reshaping of those C60 nanostructures under the local action of the AFM tip at room temperature. The dissipated energy is about 75 meV and can be interpreted as the activation energy required for this migration process.
Resumo:
Geologic evidence along the northern part of the 2004 Aceh-Andaman rupture suggests that this region generated as many as five tsunamis in the prior 2000years. We identify this evidence by drawing analogy with geologic records of land-level change and the tsunami in 2004 from the Andaman and Nicobar Islands (A&N). These analogs include subsided mangrove swamps, uplifted coral terraces, liquefaction, and organic soils coated by sand and coral rubble. The pre-2004 evidence varies in potency, and materials dated provide limiting ages on inferred tsunamis. The earliest tsunamis occurred between the second and sixth centuries A.D., evidenced by coral debris of the southern Car Nicobar Island. A subsequent tsunami, probably in the range A.D. 770-1040, is inferred from deposits both in A&N and on the Indian subcontinent. It is the strongest candidate for a 2004-caliber earthquake in the past 2000years. A&N also contain tsunami deposits from A.D. 1250 to 1450 that probably match those previously reported from Sumatra and Thailand, and which likely date to the 1390s or 1450s if correlated with well-dated coral uplift offshore Sumatra. Thus, age data from A&N suggest that within the uncertainties in estimating relative sizes of paleo-earthquakes and tsunamis, the 1000year interval can be divided in half by the earthquake or earthquakes of A.D. 1250-1450 of magnitude >8.0 and consequent tsunamis. Unlike the transoceanic tsunamis generated by full or partial rupture of the subduction interface, the A&N geology further provides evidence for the smaller-sized historical tsunamis of 1762 and 1881, which may have been damaging locally.
Resumo:
Stable isotope geochemistry is a valuable toolkit for addressing a broad range of problems in the geosciences. Recent technical advances provide information that was previously unattainable or provide unprecedented precision and accuracy. Two such techniques are site-specific stable isotope mass spectrometry and clumped isotope thermometry. In this thesis, I use site-specific isotope and clumped isotope data to explore natural gas development and carbonate reaction kinetics. In the first chapter, I develop an equilibrium thermodynamics model to calculate equilibrium constants for isotope exchange reactions in small organic molecules. This equilibrium data provides a framework for interpreting the more complex data in the later chapters. In the second chapter, I demonstrate a method for measuring site-specific carbon isotopes in propane using high-resolution gas source mass spectrometry. This method relies on the characteristic fragments created during electron ionization, in which I measure the relative isotopic enrichment of separate parts of the molecule. My technique will be applied to a range of organic compounds in the future. For the third chapter, I use this technique to explore diffusion, mixing, and other natural processes in natural gas basins. As time progresses and the mixture matures, different components like kerogen and oil contribute to the propane in a natural gas sample. Each component imparts a distinct fingerprint on the site-specific isotope distribution within propane that I can observe to understand the source composition and maturation of the basin. Finally, in Chapter Four, I study the reaction kinetics of clumped isotopes in aragonite. Despite its frequent use as a clumped isotope thermometer, the aragonite blocking temperature is not known. Using laboratory heating experiments, I determine that the aragonite clumped isotope thermometer has a blocking temperature of 50-100°C. I compare this result to natural samples from the San Juan Islands that exhibit a maximum clumped isotope temperature that matches this blocking temperature. This thesis presents a framework for measuring site-specific carbon isotopes in organic molecules and new constraints on aragonite reaction kinetics. This study represents the foundation of a future generation of geochemical tools for the study of complex geologic systems.
Resumo:
The influence of dielectric surface energy on the initial nucleation and the growth of pentacene films as well as the electrical properties of the pentacene-based field-effect transistors are investigated. We have examined a range of organic and inorganic dielectrics with different surface energies, such as polycarbonate/SiO2, polystyrene/SiO2, and PMMA/SiO2 bi-layered dielectrics and also the bare SiO2 dielectric. Atomic force microscopy measurements of sub-monolayer and thick pentacene films indicated that the growth of pentacene film was in Stranski-Kranstanow growth mode on all the dielectrics. However, the initial nucleation density and the size of the first-layered pentacene islands deposited on different dielectrics are drastically influenced by the dielectric surface energy. With the increasing of the surface energy, the nucleation density increased and thus the average size of pentacene islands for the first mono-layer deposition decreased. The performance of fabricated pentacene-based thin film transistors was found to be highly related to nucleation density and the island size of deposited Pentacene film, and it had no relationship to the final particle size of the thick pentacene film. The field effect mobility of the thin film transistor could be achieved as high as 1.38 cm(2)/Vs with on/off ratio over 3 x 10(7) on the PS/SiO2 where the lowest surface energy existed among all the dielectrics. For comparison, the values of mobility and on/off ratio were 0.42 cm(2)/Vs and 1 x 10(6) for thin film transistor deposited directly on bare SiO2 having the highest surface energy.
Resumo:
Organic thin-film transistor memory devices were realized by inserting a layer of nanoparticles (such as Ag or CaF2) between two Nylon 6 gate dielectrics as the floating gate. The transistor memories were fabricated on glass substrates by full thermal deposition. The transistors exhibit significant hysteresis behavior in current-voltage characteristics, due to the separated Ag or CaF2 nanoparticle islands that act as charge trap centers. The mechanism of the transistor memory operation was discussed.
Resumo:
The vertical fluxes and vertical transferring forms of 18 rare elements were studied for the first time in the coral reef ecosystem of Nansha Islands, South China Sea, by deploying sediment traps, The results showed that the vertical transferring flux of most of the measured rare elements in Yongshu lagoon were higher than that in Zhubi lagoon. The vertical transferring forms of rare elements were mainly in the carbonate form, but Ta, As, Th mainly in the ion-exchange form, Ag in iron-manganese oxide form and Sb in the organic matter + sulphide form. None of the 18 rare elements was transferred mainly in the form of detritus silicate to sea floor. This proved that rare elements originating from the earth's crust were redistributed in sinking particulates after they were brought into ocean. The relation between the fluxes and surface seawater temperature (STT) was also studied. The sensitivity of rare elements to SST was in order: Rb>V>As>Ti>U>Zn>Sb>Hf>Ag>Cs.
Resumo:
The environmental fate of selected persistent organic pollutants (POPs) in the North Sea system is modelled with a high resolution Fate and Transport Ocean Model (FANTOM) that uses hydrodynamic model output from the Hamburg Shelf Ocean Model (HAMSOM). Large amounts of POPs enter the North Sea from the surrounding highly populated, industrialised and agricultural countries. Major pathways to the North Sea are atmospheric deposition and river inputs, with additional contributions coming from bottom sediments and adjacent seas. The model domain covers the entire North Sea region, extending northward as far as the Shetland Islands, and includes adjacent basins such as the Skagerrak, Kattegat, and the westernmost part of the Baltic Sea. Model resolution (for both models) is 1.5’ latitude x 2.5’ longitude (approximately 3 km horizontal resolution) with 30 vertical levels. The POP model also has 20 sediment layers. Important model processes controlling the fate of POPs in the North Sea system are discussed. Results focus on Lindane gamma- HCH or gamma-hexachlorocyclohexane) and PCB 153.
Resumo:
Sinking particles through the pelagic ocean have been traditionally considered the most important vehicle by which the biological pump sequesters carbon in the ocean interior. Nevertheless, regional scale variability in particle flux is a major outstanding issue in oceanography. 5 Here, we have studied the regional and temporal variability of total particulate organic matter fluxes, as well as chloropigment and total hydrolyzed amino acid (THAA) compositions and fluxes in the Canary Current region, between 20–30 N, during two contrasting periods: August 2006, characterized by warm and stratified waters, but also intense winds which enhanced eddy development south of the Canary Islands, 10 and February 2007, characterized by colder waters, less stratification and higher productivity. We found that the eddy-field generated south of the Canary Islands enhanced by >2 times particulate organic carbon (POC) export with respect to stations (FF; farfield) outside the eddy-field influence. We also observed flux increases of one order of magnitude in chloropigment and 70% in THAA in the eddy-field relative to FF stations. 15 Principal Components Analysis (PCA) was performed to assess changes in particulate organic matter composition between stations. At eddy-field stations, higher chlorophyll enrichment reflected “fresher” material, while at FF stations a higher proportion of pheophytin indicated greater degradation due to microbes and microzooplankton. PCA also suggests that phytoplankton community structure, particularly the dominance of 20 diatoms versus carbonate-rich plankton, is the major factor influencing the POC export within the eddy field. In February, POC export fluxes were the highest ever reported for this area, reaching values of 15 mmolCm−2 d−1 at 200m depth. Compositional changes in pigments and THAA indicate that the source of sinking particles varies zonally and meridionally and suggest that sinking particles were more degraded at 25 near-coastal stations relative to open ocean stations.
Resumo:
[EN] Sinking particles through the pelagic ocean have been traditionally considered the most important vehicle by which the biological pump sequesters carbon in the ocean interior. Nevertheless, regional scale variability in particle flux is a major outstanding issue in oceanography. Here, we have studied the regional and temporal variability of total particulate organic matter fluxes, as well as chloropigment and total hydrolyzed amino acid (THAA) compositions and fluxes in the Canary Current region, between 20?30_ N, during two contrasting periods: August 2006, characterized by warm and stratified waters, but also intense winds which enhanced eddy development south of the Canary Islands, and February 2007, characterized by colder waters, less stratification and higher productivity. We found that the eddyfield generated south of the Canary Islands enhanced by >2 times particulate organic carbon (POC) export with respect to stations (FF; far-field) outside the eddy-field influence. We also observed flux increases of one order of magnitude in chloropigment and 2 times in THAA in the eddy-field relative to FF stations. Principal Components Analysis (PCA) was performed to assess changes in particulate organic matter composition between stations. At eddy-field stations, higher chlorophyll enrichment reflected ?fresher? material, while at FF stations a higher proportion of pheophytin indicated greater degradation due to microbes and microzooplankton. PCA also suggests that phytoplankton community structure, particularly the dominance of diatoms versus carbonate-rich plankton, is the major factor influencing the POC export within the eddy field. In February, POC export POC export within the eddy field. In February, POC export fluxes were the highest ever reported for this area, reaching values of _15 mmolCm?2 d?1 at 200m depth. Compositional changes in pigments and THAA indicate that the source of sinking particles varies zonally and meridionally and suggest that sinking particles were more degraded at near-coastal stations relative to open ocean stations.
Resumo:
In recent decades, Organic Thin Film Transistors (OTFTs) have attracted lots of interest due to their low cost, large area and flexible properties which have brought them to be considered the building blocks of the future organic electronics. Experimentally, devices based on the same organic material deposited in different ways, i.e. by varying the deposition rate of the molecules, show different electrical performance. As predicted theoretically, this is due to the speed and rate by which charge carriers can be transported by hopping in organic thin films, transport that depends on the molecular arrangement of the molecules. This strongly suggests a correlation between the morphology of the organic semiconductor and the performance of the OTFT and hence motivated us to carry out an in-situ real time SPM study of organic semiconductor growth as an almost unprecedent experiment with the aim to fully describe the morphological evolution of the ultra-thin film and find the relevant morphological parameters affecting the OTFT electrical response. For the case of 6T on silicon oxide, we have shown that the growth mechanism is 2D+3D, with a roughening transition at the third layer and a rapid roughening. Relevant morphological parameters have been extracted by the AFM images. We also developed an original mathematical model to estimate theoretically and more accurately than before, the capacitance of an EFM tip in front of a metallic substrate. Finally, we obtained Ultra High Vacuum (UHV) AFM images of 6T at lying molecules layer both on silicon oxide and on top of 6T islands. Moreover, we performed ex-situ AFM imaging on a bilayer film composed of pentacene (a p-type semiconductor) and C60 (an n-type semiconductor).
Dissolved organic carbon (DOC) in Arctic ground ice, from northwest Canada, east Siberia, and Alaska
Resumo:
Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg/L (mean: 9.6 mg/L). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km**3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.
Resumo:
To establish a natural background and its temporal and spatial variability for the area around Casey Station in the Windmill Islands, East Antarctica, the authors studied major and trace element concentrations and the distribution of organic matter in marine and lacustrine sediments. A wide range of natural variability in trace metal concentrations was identified between sites and within a time scale of 9 ka (e.g., Ni 5-37 mg/kg, Cu 20-190 mg/kg, Zn 50-300 mg/kg, Pb 4.5- 34 mg/kg). TOC concentrations are as high as 3 wt.% at the marine sites and 20 wt.% at the lacustrine sites, and indicate highly productive ecosystems. These data provide a background upon which the extent of human impact can be established, and existing data indicate negligible levels of disturbance. Geochemical and lithological data for a lacustrine sediment core from Beall Lake confirm earlier interpretation of recent climatic changes based on diatom distribution, and the onset of deglaciation in the northern part of the Windmill Islands between 8.6 and 8.0 ka BP. The results demonstrate that geochemical and lithological data can not only be used to define natural background values, but also to assess long-term climatic changes of a specific environment. Other sites, however, preserve a completely different sedimentary record. Therefore, inferred climatic record, and differences between sites, can be ascribed to differences in elevation, distance from the shore, water depth, and local catchment features. The extreme level of spatial variability seems to be a feature of Antarctic coastal areas, and demonstrates that results obtained from a specific site cannot be easily generalized to a larger area.