1000 resultados para Organic fertilizer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: This experiment aimed to determine whether the soil application of organic fertilizers can help the establishment of cacao and whether shade alters its response to fertilizers. Study Design: The 1.6 ha experiment was conducted over a period of one crop year (between April 2007 and March 2008) at the Cocoa Research Institute of Ghana. It involved four cacao genotypes (T 79/501, PA 150, P 30 [POS] and SCA 6), three shade levels (‘light’, ‘medium’ and ‘heavy’) and two fertilizer treatments (‘no fertilizer’, and ‘140 kg/ha of cacao pod husk ash (CPHA) plus poultry manure at 1,800 kg/ha). The experiment was designed as a split-plot with the cacao genotypes as the main plot factor and shade x fertilizer combinations as the sub-plots. Methodology: Gliricidia sepium and plantains (Musa sapientum) were planted in different arrangements to create the three temporary shade regimes for the cacao. Data were collected on temperature and relative humidity of the shade environments, initial soil nutrients, soil moisture, leaf N, P and K+ contents, survival, photo synthesis and growth of test plants. Results: The genotypes P 30 [POS] and SCA 6 showed lower stomatal conductance under non-limiting conditions. In the rainy seasons, plants under light shade had the highest CO2 assimilation rates. However, in the dry season, plants under increased shade recorded greater photosynthetic rates (P = .03). A significant shade x fertilizer interaction (P = .001) on photosynthesis in the dry season showed that heavier shade increases the benefits that young cacao gets from fertilizer application in that season. Conversely, shade should be reduced during the wet seasons to minimize light limitation to assimilation. Conclusion: Under ideal weather conditions young cacao exhibits genetic variability on stomatal conductance. Also, to optimize plant response to fertilizer application shade must be adjusted taking the prevailing weather condition into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent decades, the use of organic fertilizers has gained increasing interest mainly for two reasons: their ability to improve soil fertility and the need to find a sustainable alternative to mineral and synthetic fertilizers. In this context, sewage sludge is a useful organic matrix that can be successfully used in agriculture, due to its chemical composition rich in organic matter, nitrogen, phosphorus and other micronutrients necessary for plant growth. This work investigated three indispensable aspects (i.e., physico-chemical properties, agronomic efficiency and environmental safety) of sewage sludge application as organic fertilizer, emphasizing the role of tannery sludge. In a comparison study with municipal sewage sludge, results showed that the targeted analyses applied (total carbon and nitrogen content, isotope ratio of carbon and nitrogen, infrared spectroscopy and thermal analysis) were able to discriminate tannery sludge from municipal ones, highlighting differences in composition due to the origin of the wastewater and the treatment processes used in the plants. Regarding agronomic efficiency, N bioavailability was tested in a selection of organic fertilizers, including tannery sludge and tannery sludge-based fertilizers. Specifically, the hot-water extractable N has proven to be a good chemical indicator, providing a rapid and reliable indication of N bioavailability in soil. Finally, the behavior of oxybenzone (an emerging organic contaminant detected in sewage sludge) in soils with different physico-chemical properties was studied. Through adsorption and desorption experiments, it was found that the mobility of oxybenzone is reduced in soils rich in organic matter. Furthermore, through spectroscopic methods (e.g., infrared spectroscopy and surface-enhanced Raman spectroscopy) the mechanisms of oxybenzone-humic acids interaction were studied, finding that H-bonds and π-π stacking were predominantly present.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Slow-release and organic fertilizers are promising alternatives to conventional fertilizers, as both reduce losses by leaching, volatilization and problems of toxicity and/or salinity to plants. The objective of this work was to evaluate the effect of different rates of the organic fertilizer Humato-Macota® compared with the slow-release fertilizer Osmocote® on the growth and nitrogen content in the dry matter of Rangpur lime. A field experiment was conducted in a factorial completely randomized design with an additional treatment (4 x 4 +1). The first factor consisted of four Humato­Macota® rates (0, 1, 2, and 3%) applied to the substrate; the second factor consisted of the same Humato-Macota® concentrations, but applied as fortnightly foliar sprays; the additional treatment consisted of application of 5 kgm-3 Osmocote® 18-05-09. Means of all growth characteristics (plant height, total dry matter, root/shoot ratio and leaf area) and the potential quantum yield of photosystem II (Fv/Fm) were higher when plants were fertilized with the slow-release fertilizer. The organic fertilizer applied alone did not meet the N requirement of Rangpur lime.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Information concerning the response of coffee to organic fertilizers is scarce. This study evaluates the effect of different doses of compost and Crotalaria juncea L. on growth, production and nitrogen nutrition of coffee trees. The treatments consisted of compost at rates of 25, 50, 75 and 100% of the recommended fertilization, with or without the aerial part of C. juncea. C. juncea was grown with NH4-N (2% 15N) and applied to coffee. The use of C. juncea increased growth in height and diameter of the coffee canopy. In the first year, the percentage of N derived from C. juncea reached 8.5% at seven months and 4.1% at fifteen months after fertilization. In the second year, the percentage of N derived from C. juncea reached 17.9% N at the early harvest, five months after fertilization. Increased rates of compost increased pH , P , K , Ca , Mg , sum of bases , effective CEC, base saturation and organic matter and reduced potential acidity. 15N allowed the identification of the N contribution from C. juncea with percentage of leaf N derived from Crotalaria juncea from 9.2 to 17.9%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Orchid fertilization is fundamental for a satisfactory plant growth and development for commercial orchid production as well as in collections. Mineral and/or organic sources can be used for fertilization. The objective of this study was to evaluate the effect of the use of organic and/or mineral fertilizers on the nutrition and growth of orchid (Laelia purpurata 'werkhanserii' x L. lobata 'Jeni') seedlings in greenhouse. The following fertilizers were tested: an NPK fertilizer + micronutrients; a Ca source in the form of calcium nitrate; two organic fertilizers, one prepared with a mixture of bone meal, castor meal and ash, and a similar commercial fertilizer. The organic fertilizers were distributed on the surface of the pots every two months and the minerals were applied weekly to the substrate in 25 mL aliquots of a solution containing 1 g L-1 of the respective fertilizer. The plant response to the application of mineral together with organic fertilizer was better, with higher dry matter production than by the isolated application of each fertilizer (organic or mineral). The treatments with calcium nitrate + NPK fertilizer did not differ significantly from the use of NPK fertilizer, probably due to the S deficiency detected in a mineral analysis of the tissues. Commercial organic fertilizer had a very elevated B level, leading to toxicity symptoms, reduced growth and necrotized tips of the older leaves in all fertilized treatments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The impact of pig slurry and poultry litter fertilization on soils depends on the conditions of use and the amounts applied. This study evaluated the effect of organic fertilizers after different application periods in different areas on the physical properties and organic carbon contents of a Rhodic Kandiudox, in Concordia, Santa Catarina, in Southern Brazil. The treatments consisted of different land uses and periods of pig and poultry litter fertilization: silage maize (M7 years), silage maize (M20 years), annual ryegrass pasture (P3 years), annual ryegrass pasture (P15 years), perennial pasture (PP20 years), yerba mate tea (Mt20 years), native forest (NF), and native pasture without manure application (P0). The 0-5, 5-10 and 10-20 cm soil layers were sampled and analyzed for total organic carbon, total nitrogen and soil physical properties such as density, porosity, aggregation, degree of flocculation, and penetration resistance. The organic carbon levels in the cultivated areas treated with organic fertilizer were even lower than in native forest soil. The organic fertilizers and studied management systems reduced the flocculation degree of the clay particles, and low macroporosity was observed in some areas. Despite these changes, a good soil physical structure was maintained, e.g., soil density and resistance to penetration were below the critical limits, whereas aggregate stability was high, which is important to reduce water erosion in these areas with rugged terrain in western Santa Catarina, used for pig and poultry farming.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of organic fertilizers and the inoculation of mycorrhizal fungi in the cultivation of oil crops is essential to reduce production costs and minimize negative impacts on natural resources. A field experiment was conducted in an Argissolo Amarelo (Ultisol) with the aim of evaluating the effects of fertilizer application and inoculation of arbuscular mycorrhizal fungi on the growth attributes of sunflower (Helianthus annuus L.) and on soil chemical properties. The experiment was conducted at the Federal University of Rio Grande do Norte, Brazil, using a randomized block design with three replicates in a 4 × 2 factorial arrangement consisting of four treatments in regard to application of organic fertilizer (liquid biofertilizer, cow urine, mineral fertilizer, and unfertilized control) and two treatments in regard to arbuscular mycorrhizal fungi (with and without mycorrhizal fungi). The results showed that the physiological attributes of relative growth rate and leaf weight ratio were positively influenced by fertilization, compared to the control treatment, likely brought about by the supply of nutrients from the fertilizers applied. The growth and productivity attributes were positively affected by mycorrhization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ABSTRACT Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf), a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments consisted of two rates of organic fertilizer (0 and 30 m3 ha-1) and five N rates (0, 10, 20, 40, and 80 kg ha-1), in a randomized block design arranged in split plots, with five replications. The organic fertilizer levels represented the main plots and the N levels, the subplots. The source of N was urea and the source of organic fertilizer was goat manure. Irrigation was applied through a drip system and N by fertigation. At the end of the third growing season, soil chemical properties were determined and nitrate concentration in the soil solution (extracted by porous cups) was determined. Organic fertilization increased organic matter, pH, EC, P, K, Ca, Mg, Mn, sum of bases, base saturation, and CEC, but decreased exchangeable Cu concentration in the soil by complexation of Cu in the organic matter. Organic fertilization raised the nitrate concentration in the 0.20-0.40 m soil layer, making it leachable. Nitrate concentration in the soil increased as N rates increased, up to more than 300 mg kg-1 in soil and nearly 800 mg L-1 in the soil solution, becoming prone to leaching losses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Organic fertilizers based on seaweed extract potentially have beneficial effects on many crop plants. Herewe investigate the impact of organic fertilizer on Rosmarinus officinalis measured by both yield and oilquality. Plants grown in a temperature-controlled greenhouse with a natural photoperiod and a controlledirrigation system were treated with seaweed fertilizer and an inorganic fertilizer of matching mineralcomposition but with no organic content. Treatments were either by spraying on to the foliage or wateringdirect to the compost. The essential oil was extracted by hydro-distillation with a Clevenger apparatusand analysed by gas-chromatography mass-spectrometry (GC–MS) and NMR. The chemical composi-tions of the plants were compared, and qualitative differences were found between fertilizer treatmentsand application methods. Thus sprayed seaweed fertilizer showed a significantly higher percentage of�-pinene, �-phellandrene, �-terpinene (monoterpenes) and 3-methylenecycloheptene than other treat-ments. Italicene, �-bisabolol (sesquiterpenes), �-thujene, and E-isocitral (monoterpenes) occurred insignificantly higher percentages for plants watered with the seaweed extract. Each was significantly dif-ferent to the inorganic fertilizer and to controls. The seaweed treatments caused a significant increasein oil amount and leaf area as compared with both inorganic treatments and the control regardless ofapplication method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A field experiment was conducted with chamomile (Chamomilla recutita [L.] Rauschert), in an area of the Olericulture and Medicinal Plants of the Horticulture Department at UNESP - Jaboticabal Campus, with the aim to evaluate the influence of organic and chemical fertilization on the yield of flowers, and content and composition of the essential oil of chamomile. The experimental design for the yield of flowers consisted of randomized blocks with 7 treatments and 4 replications, for the analysis of the contents and composition of the oil, the completely randomized block was used and for analysis of the correlation between harvesting and treatment, the split-plot design into randomized blocks was used. The treatments tested were: no fertilization, green manure (Mucuna aterrima + Crotalaria spectabilis), green manure (plant cocktail), organic fertilizer (farmyard manure), N as urea, N as ammonium sulphate, NPK with N supplement as ammonium sulphate. There was no influence of the treatments on the yield of flowers nor on the essential oil content; on the other hand both characteristics did show significant differences in harvesting times (Tukey 5%). The main yield was 885.90 kg/ha dry flowers and the mean oil content was 0,86%. The green manure treatment (M. aterrima + C. spectabilis) showed a higher percentage of chamazulene content, with a highly significant difference in harvesting times (Tukey 1%). The a-bisabolol percentages did not evidence significant differences between treatments. However, among harvesting times, there was a variation. A negative correlation was verified between the chamazulene and abisabolol percentages; the first increasing - from 21.02 to 36.17% - and the latter decreasing - from 14.12 to 8.72 % - from the first to the sixth harvest. The observed mean content of chamazulene was 14.64 % and a-bisabolol was 16.72 %.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present study, the composition of essential oil of leaves and inflorescences of jambu (Spilanthes oleracea. Jambuarana), under organic manuring and mineral fertilization, was stuhed. Jambu plants show important chemical properties and their production has been addressed for the extraction of the essential oils for cosmetics industries, due to their pharmacolopcal properties. The experimental area of treatments contained urea as mineral fertilizer (120 g m2), applied twice and organic fertilizer (8 kg m2), applied at the planting. Jambu leaves and flowers were harvested twice: the first at 90 days after seedling transplantation and at the opening of the flower buds. Branches were cut at 7 cm from the soil, thus new branches can bud for the accomplishment of the second crop which happened 40 days after the re-budhng. The essential oil was analyzed by gas chromatography coupled with mass-spectrometry. According to our results the most representative compounds were trans-caryophyllene, germacrene-D, 1-dodecene, spathulenol and spilanthol (a compound presenting anesthetic properties) occurring in inflorescences. Fertilization procedure does not affect the content and the quality of the essential oil in Jambu plants. © 2012 Academic Journals Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of organic compounds has been a good option to reduce spending on fertilizers, and gain increased productivity in the cultivation of lettuce. However, given the wide variety of raw materials used in the preparation of organic compounds, studies are needed to evaluate its effects on the release of essential nutrients to plants and on the release of contaminants such as heavy metals. The aim of this study was to evaluate the mineral nutrition and heavy metal contamination of lettuce in soils treated with doses and types of compost. The experiment was conducted in a greenhouse in randomized blocks in factorial scheme 5x4, with five types of organic compounds and four nitrogen levels (0, 35, 70 and 140 kg ha(-1) of N), with four replications. In general, the doses of the compounds were not enough to provide the necessary quantity of nutrients to the lettuce, with the exception of nitrogen. There was no increase in levels of heavy metals in the soil above that allowed by Brazilian legislation. Furthermore, compounds based on manure plus grass, and commercial compound caused increases in Zn concentration in plants at levels above the recommended for consumed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Environmental problems related to the use of synthetic fertilizers and to organic waste management have led to increased interest in the use of organic materials as an alternative source of nutrients for crops, but this is also associated with N2O emissions. There has been an increasing amount of research into the effects of using different types of fertilization on N2O emissions under Mediterranean climatic conditions, but the findings have sometimes been rather contradictory. Available information also suggests that water management could exert a high influence on N2O emissions. In this context, we have reviewed the current scientific knowledge, including an analysis of the effect of fertilizer type and water management on direct N2O emissions. A meta-analysis of compliant reviewed experiments revealed significantly lower N2O emissions for organic as opposed to synthetic fertilizers (23% reduction). When organic materials were segregated in solid and liquid, only solid organic fertilizer emissions were significantly lower than those of synthetic fertilizers (28% reduction in cumulative emissions). The EF is similar to the IPCC factor in conventionally irrigated systems (0.98% N2O-N N applied−1), but one order of magnitude lower in rainfed systems (0.08%). Drip irrigation produces intermediate emission levels (0.66%). Differences are driven by Mediterranean agro-climatic characteristics, which include low soil organic matter (SOM) content and a distinctive rainfall and temperature pattern. Interactions between environmental and management factors and the microbial processes involved in N2O emissions are discussed in detail. Indirect emissions have not been fully accounted for, but when organic fertilizers are applied at similar N rates to synthetic fertilizers, they generally make smaller contributions to the leached NO3− pool. The most promising practices for reducing N2O through organic fertilization include: (i) minimizing water applications; (ii) minimizing bare soil; (iii) improving waste management; and (iv) tightening N cycling through N immobilization. The mitigation potential may be limited by: (i) residual effect; (ii) the long-term effects of fertilizers on SOM; (iii) lower yield-scaled performance; and (iv) total N availability from organic sources. Knowledge gaps identified in the review included: (i) insufficient sampling periods; (ii) high background emissions; (iii) the need to provide N2O EF and yield-scaled EF; (iv) the need for more research on specific cropping systems; and (v) the need for full GHG balances. In conclusion, the available information suggests a potential of organic fertilizers and water-saving practices to mitigate N2O emissions under Mediterranean climatic conditions, although further research is needed before it can be regarded as fully proven, understood and developed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Semi-arid soils cover a significant area of Earth s land surface and typically contain large amounts of inorganic C. Determining the effects of biochar additions on CO2 emissions fromsemi-arid soils is therefore essential for evaluating the potential of biochar as a climate change mitigation strategy. Here, we measured the CO2 that evolved from semi-arid calcareous soils amended with biochar at rates of 0 and 20 t ha?1 in a full factorial combination with three different fertilizers (mineral fertilizer, municipal solid waste compost, and sewage sludge) applied at four rates (equivalent to 0, 75, 150, and 225 kg potentially available N ha?1) during 182 days of aerobic incubation. A double exponential model, which describes cumulative CO2 emissions from two active soil C compartments with different turnover rates (one relatively stable and the other more labile), was found to fit verywell all the experimental datasets. In general, the organic fertilizers increased the size and decomposition rate of the stable and labile soil C pools. In contrast, biochar addition had no effects on any of the double exponential model parameters and did not interact with the effects ascribed to the type and rate of fertilizer. After 182 days of incubation, soil organic and microbial biomass C contents tended to increase with increasing the application rates of organic fertilizer, especially of compost, whereas increasing the rate of mineral fertilizer tended to suppress microbial biomass. Biochar was found to increase both organic and inorganic C contents in soil and not to interactwith the effects of type and rate of fertilizer on C fractions. As a whole, our results suggest that the use of biochar as enhancer of semi-arid soils, either alone or combined with mineral and organic fertilizers, is unlikely to increase abiotic and biotic soil CO2 emissions.