937 resultados para Organic Aerosols
Resumo:
Addressing current limitations of state-of-the-art instrumentation in aerosol research, the aim of this work was to explore and assess the applicability of a novel soft ionization technique, namely flowing atmospheric-pressure afterglow (FAPA), for the mass spectrometric analysis of airborne particulate organic matter. Among other soft ionization methods, the FAPA ionization technique was developed in the last decade during the advent of ambient desorption/ionization mass spectrometry (ADI–MS). Based on a helium glow discharge plasma at atmospheric-pressure, excited helium species and primary reagent ions are generated which exit the discharge region through a capillary electrode, forming the so-called afterglow region where desorption and ionization of the analytes occurs. Commonly, fragmentation of the analytes during ionization is reported to occur only to a minimum extent, predominantly resulting in the formation of quasimolecular ions, i.e. [M+H]+ and [M–H]– in the positive and the negative ion mode, respectively. Thus, identification and detection of signals and their corresponding compounds is facilitated in the acquired mass spectra. The focus of the first part of this study lies on the application, characterization and assessment of FAPA–MS in the offline mode, i.e. desorption and ionization of the analytes from surfaces. Experiments in both positive and negative ion mode revealed ionization patterns for a variety of compound classes comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides, and alkaloids. Besides the always emphasized detection of quasimolecular ions, a broad range of signals for adducts and losses was found. Additionally, the capabilities and limitations of the technique were studied in three proof-of-principle applications. In general, the method showed to be best suited for polar analytes with high volatilities and low molecular weights, ideally containing nitrogen- and/or oxygen functionalities. However, for compounds with low vapor pressures, containing long carbon chains and/or high molecular weights, desorption and ionization is in direct competition with oxidation of the analytes, leading to the formation of adducts and oxidation products which impede a clear signal assignment in the acquired mass spectra. Nonetheless, FAPA–MS showed to be capable of detecting and identifying common limonene oxidation products in secondary OA (SOA) particles on a filter sample and, thus, is considered a suitable method for offline analysis of OA particles. In the second as well as the subsequent parts, FAPA–MS was applied online, i.e. for real time analysis of OA particles suspended in air. Therefore, the acronym AeroFAPA–MS (i.e. Aerosol FAPA–MS) was chosen to refer to this method. After optimization and characterization, the method was used to measure a range of model compounds and to evaluate typical ionization patterns in the positive and the negative ion mode. In addition, results from laboratory studies as well as from a field campaign in Central Europe (F–BEACh 2014) are presented and discussed. During the F–BEACh campaign AeroFAPA–MS was used in combination with complementary MS techniques, giving a comprehensive characterization of the sampled OA particles. For example, several common SOA marker compounds were identified in real time by MSn experiments, indicating that photochemically aged SOA particles were present during the campaign period. Moreover, AeroFAPA–MS was capable of detecting highly oxidized sulfur-containing compounds in the particle phase, presenting the first real-time measurements of this compound class. Further comparisons with data from other aerosol and gas-phase measurements suggest that both particulate sulfate as well as highly oxidized peroxyradicals in the gas phase might play a role during formation of these species. Besides applying AeroFAPA–MS for the analysis of aerosol particles, desorption processes of particles in the afterglow region were investigated in order to gain a more detailed understanding of the method. While during the previous measurements aerosol particles were pre-evaporated prior to AeroFAPA–MS analysis, in this part no external heat source was applied. Particle size distribution measurements before and after the AeroFAPA source revealed that only an interfacial layer of OA particles is desorbed and, thus, chemically characterized. For particles with initial diameters of 112 nm, desorption radii of 2.5–36.6 nm were found at discharge currents of 15–55 mA from these measurements. In addition, the method was applied for the analysis of laboratory-generated core-shell particles in a proof-of-principle study. As expected, predominantly compounds residing in the shell of the particles were desorbed and ionized with increasing probing depths, suggesting that AeroFAPA–MS might represent a promising technique for depth profiling of OA particles in future studies.
Resumo:
Four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle- and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model–measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model–measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the recent parameterizations overpredict urban SOA formation at long photochemical ages (3 days) compared to observations from multiple sites, which can lead to problems in regional and especially global modeling. However, reducing IVOC emissions by one-half in the model to better match recent IVOC measurements improves SOA predictions at these long photochemical ages. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Measured polycyclic aromatic hydrocarbons (naphthalenes) contribute 0.7% of the modeled SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16–27, 35–61, and 19–35 %, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(+-3) %. The relative contribution of each source is uncertain by almost a factor of 2 depending on the parameterization used. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μgm-3 is also present due to the long-distance transport of highly aged OA, likely with a substantial contribution from regional biogenic SOA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies and which is higher on weekends. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr-1 of SOA globally, or 17% of global SOA, one third of which is likely to be non-fossil.
Resumo:
The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic–biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.
Resumo:
Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.
Resumo:
Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles representative of atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant time scales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semisolid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.
Resumo:
Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KMSUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.
Resumo:
Wasserlösliche organische Verbindungen (WSOCs) sind Hauptbestandteile atmosphärischer Aerosole, die bis zu ~ 50% und mehr der organischen Aerosolfraktion ausmachen. Sie können die optischen Eigenschaften sowie die Hygroskopizität von Aerosolpartikeln und damit deren Auswirkungen auf das Klima beeinflussen. Darüber hinaus können sie zur Toxizität und Allergenität atmosphärischer Aerosole beitragen.In dieser Studie wurde Hochleistungsflüssigchromatographie gekoppelt mit optischen Diodenarraydetektion und Massenspektrometrie (HPLC-DAD-MS und HPLC-MS/MS) angewandt, um WSOCs zu analysieren, die für verschiedene Aerosolquellen und -prozesse charakteristisch sind. Niedermolekulare Carbonsäuren und Nitrophenole wurden als Indikatoren für die Verbrennung fossiler Brennstoffe und die Entstehung sowie Alterung sekundärer organischer Aerosole (SOA) aus biogenen Vorläufern untersucht. Protein-Makromoleküle wurden mit Blick auf den Einfluss von Luftverschmutzung und Nitrierungsreaktionen auf die Allergenität primärer biologischer Aerosolpartikel – wie Pollen und Pilzsporen – untersucht.rnFilterproben von Grob- und Feinstaubwurden über ein Jahr hinweg gesammelt und auf folgende WSOCs untersucht: die Pinen-Oxidationsprodukte Pinsäure, Pinonsäure und 3-Methyl-1,2,3-Butantricarbonsäure (3-MBTCA) sowie eine Vielzahl anderer Dicarbonsäuren und Nitrophenole. Saisonale Schwankungen und andere charakteristische Merkmale werden mit Blick auf Aerosolquellen und -senken im Vergleich zu Daten anderen Studien und Regionen diskutiert. Die Verhätlnisse von Adipinsäure und Phthalsäure zu Azelainsäure deuten darauf hin, dass die untersuchten Aerosolproben hauptsächlich durch biogene Quellen beeinflusst werden. Eine ausgeprägte Arrhenius-artige Korrelation wurde zwischen der 3-MBTCA-¬Konzentration und der inversen Temperatur beobachtet (R2 = 0.79, Ea = 126±10 kJ mol-1, Temperaturbereich 275–300 K). Modellrechnungen zeigen, dass die Temperaturabhängigkeit auf eine Steigerung der photochemischen Produktionsraten von 3-MBTCA durch erhöhte OH-Radikal-Konzentrationen bei erhöhten Temperaturen zurückgeführt werden kann. Im Vergleich zur chemischen Reaktionskinetik scheint der Einfluss von Gas-Partikel-Partitionierungseffekten nur eine untergeordnete Rolle zu spielen. Die Ergebnisse zeigen, dass die OH-initiierte Oxidation von Pinosäure der geschwindigkeitsbestimmende Schritt der Bildung von 3-MBTCA ist. 3-MBTCA erscheint somit als Indikator für die chemische Alterung von biogener sekundärer organischer Aerosole (SOA) durch OH-Radikale geeignet. Eine Arrhenius-artige Temperaturabhängigkeit wurde auch für Pinäure beobachtet und kann durch die Temperaturabhängigkeit der biogenen Pinen-Emissionen als geschwindigkeitsbestimmender Schritt der Pinsäure-Bildung erklärt werden (R2 = 0.60, Ea = 84±9 kJ mol-1).rn rnFür die Untersuchung von Proteinnitrierungreaktionen wurde nitrierte Protein¬standards durch Flüssigphasenreaktion von Rinderserumalbumin (BSA) und Ovalbumin (OVA) mit Tetranitromethan (TNM) synthetisiert.Proteinnitrierung erfolgt vorrangig an den Resten der aromatischen Aminosäure Tyrosin auf, und mittels UV-Vis-Photometrie wurde der Proteinnnitrierungsgrad (ND) bestimmt. Dieser ist definiert als Verhältnis der mittleren Anzahl von Nitrotyrosinresten zur Tyrosinrest-Gesamtzahl in den Proteinmolekülen. BSA und OVA zeigten verschiedene Relationen zwischen ND und TNM/Tyrosin-Verhältnis im Reaktionsgemisch, was vermutlich auf Unterschiede in den Löslichkeiten und den molekularen Strukturen der beiden Proteine zurück zu führen ist.rnDie Nitrierung von BSA und OVA durch Exposition mit einem Gasgemisch aus Stickstoffdioxid (NO2) und Ozon (O3) wurde mit einer neu entwickelten HPLC-DAD-¬Analysemethode untersucht. Diese einfache und robuste Methode erlaubt die Bestimmung des ND ohne Hydrolyse oder Verdau der untersuchten Proteine und ernöglicht somit eine effiziente Untersuchung der Kinetik von Protein¬nitrierungs-Reaktionen. Für eine detaillierte Produktstudien wurden die nitrierten Proteine enzymatisch verdaut, und die erhaltenen Oligopeptide wurden mittels HPLC-MS/MS und Datenbankabgleich mit hoher Sequenzübereinstimmung analysiert. Die Nitrierungsgrade individueller Nitrotyrosin-Reste (NDY) korrelierten gut mit dem Gesamt-Proteinnitrierungsgrad (ND), und unterschiedliche Verhältnisse von NDY zu ND geben Aufschluss über die Regioselektivität der Reaktion. Die Nitrierungmuster von BSA und OVA nach Beahndlung mit TNM deuten darauf hin, dass die Nachbarschaft eines negativ geladenen Aminosäurerestes die Tyrosinnitrierung fördert. Die Behandlung von BSA durch NO2 und O3 führte zu anderend Nitrierungemustern als die Behandlung mit TNM, was darauf hindeutet, dass die Regioselektivität der Nitrierung vom Nitrierungsmittel abhängt. Es zeigt sich jedoch, dass Tyrosinreste in Loop-Strukturen bevorzugt und unabhängig vom Reagens nitriert werden.Die Methoden und Ergebnisse dieser Studie bilden eine Grundlage für weitere, detaillierte Untersuchungen der Reaktionskinetik sowie der Produkte und Mechanismen von Proteinnitrierungreaktionen. Sie sollen helfen, die Zusammenhänge zwischen verkehrsbedingten Luftschadstoffen wie Stickoxiden und Ozon und der Allergenität von Luftstaub aufzuklären.rn
Resumo:
Aerosolpartikel beeinflussen das Klima durch Streuung und Absorption von Strahlung sowie als Nukleations-Kerne für Wolkentröpfchen und Eiskristalle. Darüber hinaus haben Aerosole einen starken Einfluss auf die Luftverschmutzung und die öffentliche Gesundheit. Gas-Partikel-Wechselwirkunge sind wichtige Prozesse, weil sie die physikalischen und chemischen Eigenschaften von Aerosolen wie Toxizität, Reaktivität, Hygroskopizität und optische Eigenschaften beeinflussen. Durch einen Mangel an experimentellen Daten und universellen Modellformalismen sind jedoch die Mechanismen und die Kinetik der Gasaufnahme und der chemischen Transformation organischer Aerosolpartikel unzureichend erfasst. Sowohl die chemische Transformation als auch die negativen gesundheitlichen Auswirkungen von toxischen und allergenen Aerosolpartikeln, wie Ruß, polyzyklische aromatische Kohlenwasserstoffe (PAK) und Proteine, sind bislang nicht gut verstanden.rn Kinetische Fluss-Modelle für Aerosoloberflächen- und Partikelbulk-Chemie wurden auf Basis des Pöschl-Rudich-Ammann-Formalismus für Gas-Partikel-Wechselwirkungen entwickelt. Zunächst wurde das kinetische Doppelschicht-Oberflächenmodell K2-SURF entwickelt, welches den Abbau von PAK auf Aerosolpartikeln in Gegenwart von Ozon, Stickstoffdioxid, Wasserdampf, Hydroxyl- und Nitrat-Radikalen beschreibt. Kompetitive Adsorption und chemische Transformation der Oberfläche führen zu einer stark nicht-linearen Abhängigkeit der Ozon-Aufnahme bezüglich Gaszusammensetzung. Unter atmosphärischen Bedingungen reicht die chemische Lebensdauer von PAK von wenigen Minuten auf Ruß, über mehrere Stunden auf organischen und anorganischen Feststoffen bis hin zu Tagen auf flüssigen Partikeln. rn Anschließend wurde das kinetische Mehrschichtenmodell KM-SUB entwickelt um die chemische Transformation organischer Aerosolpartikel zu beschreiben. KM-SUB ist in der Lage, Transportprozesse und chemische Reaktionen an der Oberfläche und im Bulk von Aerosol-partikeln explizit aufzulösen. Es erforder im Gegensatz zu früheren Modellen keine vereinfachenden Annahmen über stationäre Zustände und radiale Durchmischung. In Kombination mit Literaturdaten und neuen experimentellen Ergebnissen wurde KM-SUB eingesetzt, um die Effekte von Grenzflächen- und Bulk-Transportprozessen auf die Ozonolyse und Nitrierung von Protein-Makromolekülen, Ölsäure, und verwandten organischen Ver¬bin-dungen aufzuklären. Die in dieser Studie entwickelten kinetischen Modelle sollen als Basis für die Entwicklung eines detaillierten Mechanismus für Aerosolchemie dienen sowie für das Herleiten von vereinfachten, jedoch realistischen Parametrisierungen für großskalige globale Atmosphären- und Klima-Modelle. rn Die in dieser Studie durchgeführten Experimente und Modellrechnungen liefern Beweise für die Bildung langlebiger reaktiver Sauerstoff-Intermediate (ROI) in der heterogenen Reaktion von Ozon mit Aerosolpartikeln. Die chemische Lebensdauer dieser Zwischenformen beträgt mehr als 100 s, deutlich länger als die Oberflächen-Verweilzeit von molekularem O3 (~10-9 s). Die ROIs erklären scheinbare Diskrepanzen zwischen früheren quantenmechanischen Berechnungen und kinetischen Experimenten. Sie spielen eine Schlüsselrolle in der chemischen Transformation sowie in den negativen Gesundheitseffekten von toxischen und allergenen Feinstaubkomponenten, wie Ruß, PAK und Proteine. ROIs sind vermutlich auch an der Zersetzung von Ozon auf mineralischem Staub und an der Bildung sowie am Wachstum von sekundären organischen Aerosolen beteiligt. Darüber hinaus bilden ROIs eine Verbindung zwischen atmosphärischen und biosphärischen Mehrphasenprozessen (chemische und biologische Alterung).rn Organische Verbindungen können als amorpher Feststoff oder in einem halbfesten Zustand vorliegen, der die Geschwindigkeit von heterogenen Reaktionenen und Mehrphasenprozessen in Aerosolen beeinflusst. Strömungsrohr-Experimente zeigen, dass die Ozonaufnahme und die oxidative Alterung von amorphen Proteinen durch Bulk-Diffusion kinetisch limitiert sind. Die reaktive Gasaufnahme zeigt eine deutliche Zunahme mit zunehmender Luftfeuchte, was durch eine Verringerung der Viskosität zu erklären ist, bedingt durch einen Phasenübergang der amorphen organischen Matrix von einem glasartigen zu einem halbfesten Zustand (feuchtigkeitsinduzierter Phasenübergang). Die chemische Lebensdauer reaktiver Verbindungen in organischen Partikeln kann von Sekunden bis zu Tagen ansteigen, da die Diffusionsrate in der halbfesten Phase bei niedriger Temperatur oder geringer Luftfeuchte um Größenordnungen absinken kann. Die Ergebnisse dieser Studie zeigen wie halbfeste Phasen die Auswirkung organischeer Aerosole auf Luftqualität, Gesundheit und Klima beeinflussen können. rn
Resumo:
Aerosol particles are important actors in the Earth’s atmosphere and climate system. They scatter and absorb sunlight, serve as nuclei for water droplets and ice crystals in clouds and precipitation, and are a subject of concern for public health. Atmospheric aerosols originate from both natural and anthropogenic sources, and emissions resulting from human activities have the potential to influence the hydrological cycle and climate. An assessment of the extent and impacts of this human force requires a sound understanding of the natural aerosol background. This dissertation addresses the composition, properties, and atmospheric cycling of biogenic aerosol particles, which represent a major fraction of the natural aerosol burden. The main focal points are: (i) Studies of the autofluo-rescence of primary biological aerosol particles (PBAP) and its application in ambient measure-ments, and (ii) X-ray microscopic and spectroscopic investigations of biogenic secondary organic aerosols (SOA) from the Amazonian rainforest.rnAutofluorescence of biological material has received increasing attention in atmospheric science because it allows real-time monitoring of PBAP in ambient air, however it is associated with high uncertainty. This work aims at reducing the uncertainty through a comprehensive characterization of the autofluorescence properties of relevant biological materials. Fluorescence spectroscopy and microscopy were applied to analyze the fluorescence signatures of pure biological fluorophores, potential non-biological interferences, and various types of reference PBAP. Characteristic features and fingerprint patterns were found and provide support for the operation, interpretation, and further development of PBAP autofluorescence measurements. Online fluorescence detection and offline fluorescence microscopy were jointly applied in a comprehensive bioaerosol field measurement campaign that provided unprecedented insights into PBAP-linked biosphere-atmosphere interactions in a North-American semi-arid forest environment. Rain showers were found to trigger massive bursts of PBAP, including high concentrations of biological ice nucleators that may promote further precipitation and can be regarded as part of a bioprecipitation feedback cycle in the climate system. rnIn the pristine tropical rainforest air of the Amazon, most cloud and fog droplets form on bio-genic SOA particles, but the composition, morphology, mixing state and origin of these particles is hardly known. X-ray microscopy and spectroscopy (STXM-NEXAFS) revealed distinctly different types of secondary organic matter (carboxyl- vs. hydroxy-rich) with internal structures that indicate a strong influence of phase segregation, cloud and fog processing on SOA formation, and aging. In addition, nanometer-sized potassium-rich particles emitted by microorganisms and vegetation were found to act as seeds for the condensation of SOA. Thus, the influence of forest biota on the atmospheric abundance of cloud condensation nuclei appears to be more direct than previously assumed. Overall, the results of this dissertation suggest that biogenic aerosols, clouds and precipitation are indeed tightly coupled through a bioprecipitation cycle, and that advanced microscopic and spectroscopic techniques can provide detailed insights into these mechanisms.rn
Resumo:
The sea-surface microlayer (SML) is at the upper- most surface of the ocean, linking the hydrosphere with the atmosphere. The presence and enrichment of organic compounds in the SML have been suggested to influence air- sea gas exchange processes as well as the emission of primary organic aerosols. Here, we report on organic matter components collected from an approximately 50µm thick SML and from the underlying water (ULW), ca. 20 cm below the SML, in December 2012 during the SOPRAN METEOR 91 cruise to the highly productive, coastal upwelling regime off the coast of Peru. Samples were collected at 37 stations including coastal upwelling sites and off-shore stations with less organic matter and were analyzed for total and dissolved high molecular weight (> 1 kDa) combined carbohydrates (TCCHO, DCCHO), free amino acids (FAA), total and dissolved hydrolyzable amino acids (THAA, DHAA), transparent exopolymer particles (TEP), Coomassie stainable particles (CSPs), total and dissolved organic carbon (TOC, DOC), total and dissolved nitrogen (TN, TDN), as well as bacterial and phytoplankton abundance. Our results showed a close coupling between organic matter concentrations in the water column and in the SML for almost all components except for FAA and DHAA that showed highest enrichment in the SML on average. Accumulation of gel particles (i.e., TEP and CSP) in the SML differed spatially. While CSP abundance in the SML was not related to wind speed, TEP abundance decreased with wind speed, leading to a depletion of TEP in the SML at about 5 m s-1 . Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.
Resumo:
The quantification of sources of carbonaceous aerosol is important to understand their atmospheric concentrations and regulating processes and to study possible effects on climate and air quality, in addition to develop mitigation strategies. In the framework of the European Integrated Project on Aerosol Cloud Climate Interactions (EUCAARI) fine (D(p) < 2.5 mu m) and coarse (2.5 mu m < Dp < 10 mu m) aerosol particles were sampled from February to June (wet season) and from August to September (dry season) 2008 in the central Amazon basin. The mass of fine particles averaged 2.4 mu g m(-3) during the wet season and 4.2 mu g m(-3) during the dry season. The average coarse aerosol mass concentration during wet and dry periods was 7.9 and 7.6 mu g m(-3), respectively. The overall chemical composition of fine and coarse mass did not show any seasonality with the largest fraction of fine and coarse aerosol mass explained by organic carbon (OC); the average OC to mass ratio was 0.4 and 0.6 in fine and coarse aerosol modes, respectively. The mass absorbing cross section of soot was determined by comparison of elemental carbon and light absorption coefficient measurements and it was equal to 4.7 m(2) g(-1) at 637 nm. Carbon aerosol sources were identified by Positive Matrix Factorization (PMF) analysis of thermograms: 44% of fine total carbon mass was assigned to biomass burning, 43% to secondary organic aerosol (SOA), and 13% to volatile species that are difficult to apportion. In the coarse mode, primary biogenic aerosol particles (PBAP) dominated the carbonaceous aerosol mass. The results confirmed the importance of PBAP in forested areas. The source apportionment results were employed to evaluate the ability of global chemistry transport models to simulate carbonaceous aerosol sources in a regional tropical background site. The comparison showed an overestimation of elemental carbon (EC) by the TM5 model during the dry season and OC both during the dry and wet periods. The overestimation was likely due to the overestimation of biomass burning emission inventories and SOA production over tropical areas.