15 resultados para Orebodies
Resumo:
Fine-grained pyrite is the earliest generation of pyrite and the most abundant sulfide within the Urquhart Shale at Mount Isa, northwest Queensland. The pyrite is intimately interbanded with ore-grade Pb-Zn miner alization at the Mount Isa mine but is also abundant north and south of the mine at several stratigraphic horizons within the Urquhart Shale. Detailed sedimentologic, petrographic, and sulfur isotope studies of the Urquhart Shale, mostly north of the mine, reveal that the fine-grained pyrite (delta(34)S = -3.3 to +26.3 parts per thousand) formed by thermochemical sulfate reduction during diagenesis. The sulfate source was local sulfate evaporites, pseudo morphs of which are present throughout the Urquhart Shale (i.e., gypsum, anhydrite, and barite). Deep-burial diagenetic replacement of these evaporites resulted in sulfate-bearing ground waters which migrated parallel to bedding. Fine-grained pyrite formed where these fluids infiltrated and then interacted with carbon-rich laminated siltstones. Comparison of the sulfur isotope systematics of fine-grained pyrite and spatially associated base metal sulfides from the Mount Isa Pb-Zn and Cu orebodies indicates a common sulfur source of ultimately marine origin for all sulfide types. Different sulfur isotope ratio distributions for the various sulfides are the result of contrasting formation mechanisms and/or depositional conditions rather than differing sulfur sources. The sulfur isotope systematics of the base metal and associated iron sulfide generations are consistent with mineralization by reduced hydrothermal fluids, perhaps generated by bulk reduction of evaporite-sourced sulfate-bearing waters generated deeper in the Mount Isa Group, the sedimentary sequence which contains the Urquhart Shale. The available sulfur isotope data from the Mount Isa orebodies are consistent with either a chemically and thermally zoned, evolving Cu-Pb-Zn system, or discrete Cu and Pb-Zn mineralizing events linked by a common sulfur source.
Resumo:
The Mississippi Valley-type (MVT) Pb-Zn ore district at Mezica is hosted by Middle to Upper Triassic platform carbonate rocks in the Northern Karavanke/Drau Range geotectonic units of the Eastern Alps, northeastern Slovenia. The mineralization at Mezica covers an area of 64 km(2) with more than 350 orebodies and numerous galena and sphalerite occurrences, which formed epigenetically, both conformable and discordant to bedding. While knowledge on the style of mineralization has grown considerably, the origin of discordant mineralization is still debated. Sulfur stable isotope analyses of 149 sulfide samples from the different types of orebodies provide new insights on the genesis of these mineralizations and their relationship. Over the whole mining district, sphalerite and galena have delta(34)S values in the range of -24.7 to -1.5% VCDT (-13.5 +/- 5.0%) and -24.7 to -1.4% (-10.7 +/- 5.9%), respectively. These values are in the range of the main MVT deposits of the Drau Range. All sulfide delta(34)S values are negative within a broad range, with delta(34)S(pyrite) < delta(34)S(sphalerite) < delta(34)S(galena) for both conformable and discordant orebodies, indicating isotopically heterogeneous H(2)S in the ore-forming fluids and precipitation of the sulfides at thermodynamic disequilibrium. This clearly supports that the main sulfide sulfur originates from bacterially mediated reduction (BSR) of Middle to Upper Triassic seawater sulfate or evaporite sulfate. Thermochemical sulfate reduction (TSR) by organic compounds contributed a minor amount of (34)S-enriched H(2)S to the ore fluid. The variations of delta(34)S values of galena and coarse-grained sphalerite at orefield scale are generally larger than the differences observed in single hand specimens. The progressively more negative delta(34)S values with time along the different sphalerite generations are consistent with mixing of different H(2)S sources, with a decreasing contribution of H(2)S from regional TSR, and an increase from a local H(2)S reservoir produced by BSR (i.e., sedimentary biogenic pyrite, organo-sulfur compounds). Galena in discordant ore (-11.9 to -1.7%; -7.0 +/- 2.7%, n=12) tends to be depleted in (34)S compared with conformable ore (-24.7 to -2.8%, -11.7 +/- 6.2%, n=39). A similar trend is observed from fine-crystalline sphalerite I to coarse open-space filling sphalerite II. Some variation of the sulfide delta(34)S values is attributed to the inherent variability of bacterial sulfate reduction, including metabolic recycling in a locally partially closed system and contribution of H(2)S from hydrolysis of biogenic pyrite and thermal cracking of organo-sulfur compounds. The results suggest that the conformable orebodies originated by mixing of hydrothermal saline metal-rich fluid with H(2)S-rich pore waters during late burial diagenesis, while the discordant orebodies formed by mobilization of the earlier conformable mineralization.
Resumo:
The large Cerro de Pasco Cordilleran base metal deposit in central Peru is located on the eastern margin of a middle Miocene diatreme-dome complex and comprises two mineralization stages. The first stage consists of a large pyrite-quartz body replacing Lower Mesozoic Pucara carbonate rocks and, to a lesser extent, diatreme breccia. This body is composed of pyrite with pyrrhotite inclusions, quartz, and black and red chalcedony (containing hypogene hematite). At the contact with the pyrite-quartz body, the diatreme breccia is altered to pyrite-quartz-sericite-pyrite. This body was, in part, replaced by pipelike pyrrhotite bodies zoned outward to carbonate-replacement Zn-Pb ores hearing Fe-rich sphalerite (up to 24 mol % Fes). The second mineralization stage is partly superimposed on the first and consists of zoned east-west-trending Cu-Ag-(Au-Zn-Pb) enargite-pyrite veins hosted in the diatreme breccia in the western part of the deposit and well-zoned Zn-Pb-(Bi-Ag-Cu) carbonate-replacement orebodies; in both cases, sphalerite is Fe poor and the inner parts of the orebodies show typically advanced argillic alteration assemblages, including aluminum phosphate Sulfate (APS) minerals. The zoned enargite-pyrite veins display mineral zoning, from a core of enargite-pyrite +/- alunite with traces of Au, through an intermediate zone of tennantite, chalcopyrite, and Bi minerals to a poorly developed Outer zone hearing sphalerite-galena +/- kaolinite. The carbonate-hosted replacement ores are controlled along N 35 degrees E, N 90 degrees E, N 120 degrees E, and N 170 degrees E faults. They form well-zoned upward-flaring pipelike orebodies with a core of famatinite-pyrite and alunite, an intermediate zone with tetrahedrite-pyrite, chalcopyrite, matildite, cuprobismutite, emplectite, and other Bi minerals accompanied by APS minerals, kaolinite, and dickite, and an outer zone composed of Fe-poor sphalerite (in the range of 0.05-3.5 mol % Fes) and galena. The outermost zone consists of hematite, magnetite, and Fe-Mn-Zn-Ca-Mg carbonates. Most of the second-stage carbonate-replacement orebodies plunge between 25 degrees and 60 degrees to the west, suggesting that the hydrothermal fluids ascended from deeper levels and that no lateral feeding from the veins to the carbonate-replacement orebodies took place. In the Venencocha and Santa Rosa areas, located 2.5 km northwest of the Cerro de Pasco open pit and in the southern part of the deposit, respectively, advanced argillic altered dacitic domes and oxidized veins with advanced argillic alteration halos occur. The latter veins are possibly the oxidized equivalent of the second-stage enargite-pyrite veins located in the western part of the deposit. The alteration assemblage quartz-muscovite-pyrite associated with the pyrite-quartz body suggests that the first stage precipitated at slightly, acidic fin. The sulfide mineral assemblages define an evolutionary path close to the pyrite-pyrrhotite boundary and are characteristic of low-sulfidation states; they suggest that the oxidizing slightly acidic hydrothermal fluid was buffered by phyllite, shale, and carbonate host rock. However, the presence in the pyrite-quartz body of hematite within quartz suggests that, locally, the fluids were less buffered by the host rock. The mineral assemblages of the second mineralization stage are characteristic of high- to intermediate-sulfidation states. High-sulfidation states and oxidizing conditions were achieved and maintained in the cores of the second-stage orebodies, even in those replacing carbonate rocks. The observation that, in places, second-stage mineral assemblages are found in the inner and outer zones is explained in terms of the hydrothermal fluid advancing and waning. Microthermometric data from fluid inclusions in quartz indicate that the different ores of the first mineralization stage formed at similar temperatures and moderate salinities (200 degrees-275 degrees C and 0.2-6.8 wt % NaCl equiv in the pyrite-quartz body; 192 degrees-250 degrees C and 1.1-4.3 wt % NaCl equiv in the pyrrhotite bodies; and 183 degrees-212 degrees C and 3.2-4.0 wt % NaCl equiv in the Zn-Pb ores). These values are similar to those obtained for fluid inclusions in quartz and sphalerite from the second-stage ores (187 degrees-293 degrees C and 0.2-5.2 wt % NaCl equiv in the enargite-pyrite veins: 178 degrees-265 degrees C and 0.2-7.5 wt % NaCl equiv in quartz of carbonate-replacement orebodies; 168 degrees-999 degrees C and 3-11.8 wt % NaCl equiv in sphalerite of carbonate-replacement orebodies; and 245 degrees-261 degrees C and 3.2-7.7 wt % NaCl equiv in quartz from Venencocha). Oxygen and hydrogen isotope compositions oil kaolinite from carbonate-replacement orebodies (delta(18)O = 5.3-11.5%o, delta D = -82 to -114%o) and on alunite from the Venencocha and Santa Rosa areas (delta(18)O = 1.9-6.9%o, delta D = -56 to -73%o). Oxygen isotope compositions of quartz from the first and second stages have 6180 values from 9.1 to 1.7.8 per mil. Calculated fluids in equilibrium with kaolinite have delta(18)O values of 2.0 to 8.2 and delta D values of -69 to -97 per mil; values in equilibrium with alunite are -1.4 to -6.4 and -62 to -79 per mil. Sulfur isotope compositions of sulfides from both stages have a narrow range of delta(34)S values, between -3.7 and +4.2 per mil; values for sulfates from the second stage are between 4.2 and 31.2 per mil. These results define two mixing trends for the ore-forming fluids. The first trend reflects mixing between a moderately saline (similar to 10 wt % NaCl equiv) magmatic end member that had degassed (as indicated by the low delta D values) and meteoric water. The second mixing indicates condensation of magmatic vapor with HCl and SO(2) into meteoric water, which formed alunite. The hydrothermal system at Cerro de Pasco was emplaced at a shallow depth (similar to 500 m) in the epithermal and upper part of a porphyry environment. The similar temperatures and salinities obtained for the first stage and second stages, together with the stable isotope data, indicate that both stages are linked and represent successive stages of epithermal polymetallic mineralization in the upper part of a porphyry system.
Resumo:
Several major iron deposits occur in the Quadrilatero Ferrifero (QF), southeastern region of Brazil, where metamorphosed and heterogeneously deformed banded iron formation (BIF) of the Caue Formation, regionally called itabirite, was transformed into high- (Fe >64%) and lowgrade (30%
Resumo:
Structural, geochemical, and isotope studies were carried out on the gold deposits of the Pontes e Lacerda region (Mato Grosso state, Brazil), where rocks of the Aguapei and Rondoniano mobile belts (southwestern Amazonian craton) occur. The orebodies are hosted in metavolcanic, gneiss-granite, quartzite, tonalite, and granite units. Tectonics involve oblique overthrusting (from northeast to southwest), which led to the formation of recumbent folds and thrusts (pathways for the mineralizing fluids), upright folds, and faults with dominant strike-slip component. These unconformities represent potential sites for mineralization. During geological mapping, it was observed that the orebodies consist of quartz, pyrite, and gold, and that the hydrothermal alteration zone contains quartz, sericite, pyrite (altered to limonite), and magnetite (altered to hematite). Chalcopyrite, galena, and sphalerite occur only in the Onça deposit. Chemical analysis of sulfides indicates high contents of Bi, Se, and Te in sulfides and gold, suggesting plutonic involvement in the origin of hydrothermal solutions. K-Ar dating of hydrothermal sericites from gold veins yielded ages in the range from 960 to 840 Ma, which may indicate the age of original crystallization of sericite. Pb-Pb dating in galenas yielded model ages in the range from 1000 to 800 Ma for the Onça deposit, which is in agreement with K-Ar ages. Pb-isotopic ratios indicate high U/Pb and low Th/Pb for the upper-crustal Pb source before incorporation in galena crystals. The Pontes e Lacerda gold deposits yielded ages correlated to the Aguapei event and probably were formed during a Proterozoic contractional tectonic period in the southwestern part of the Amazon craton, which may characterize an important metallogenic epoch in the Pontes e Lacerda region.
Resumo:
This paper presents the classification of 110 copper ore samples from Sossego Mine, based on X-ray diffraction and cluster analysis. The comparison based on the position and the intensity of the diffracted peaks allowed the distinction of seven ore types, whose differences refer to the proportion of major minerals: quartz, feldspar, actinolite, iron oxides, mica and chlorite. There was a strong correlation between the grouping and the location of the samples in Sequeirinho and Sossego orebodies. This relationship is due to different types and intensities of hydrothermal alteration prevailing in each body, which reflect the mineralogical composition and thus the X-ray diffractograms of samples.
Resumo:
In the past few years intensive studies have been going on concerning Cambrian formations as a locale for orebodies. Many of the dolomites and limestones of southwestern Montana are susceptible to replacement by mineralizing solutions, especially when overlain by a rather impervious layer of shale, as is the Pilgrim limestone of Upper Cambrian time.
Resumo:
As a result of the variscan collision, several allochtonous complexes were emplaced on the Iberian margin in Devonian times, among them the Cabo Ortegal Complex comprising the Moeche ophiolitic sequence. Copper has been won from several mines (Piquitos I & II, Barqueira, Maruxa) from disseminated ores and thin massive sulphide layers in the Moeche Unit, a strongly deformed meta-volcanic sequence comprising mainly quartz-chlorite schists and mylonites, which defines the top of the ophiolite. The ores were metamorphosed and strongly deformed under brittle conditions (for pyrite), but their textures are often apparently post-deformational, due to very common solution-transfer processes; they are composed mostly of pyrite and chalcopyrite, with minor sphalerite, pyrrhotite, etc., and with traces of native gold and PGE. The geology, mineralogy, and geochemistry of the orebodies relate closely to VMS of the Cu-Zn (Cyprus) type. Fluid inclusion studies allowed an estimation of metamorphic conditions at pressures of 2/2’5 kb and T 325/350ºC. New determinations using the chlorite geothermometer yield temperatures around 320 ºC, corresponding to pressures near 2 kb according to the isochores deduced from the fluid inclusion study, although in the Barqueira mine higher temperatures, up to 350 ºC, are found, corresponding to presssures up to 2’5 kb. Pb isotopic compositions of pyrite point to a double source of Pb, i.e. a main mantle and a subordinate crustal source. The values for 87SR/86Sr in pyrite support this interpretation, but some results suggest later mobilization in an open system, corresponding to solution-transfer. Age determinations of pyrite deduced from the Pb isotope uranogenic graph, ≈ 480 Ma, do not fit with the metamorphic ages published for the Moeche Unit, and might point to the age of Pb extraction from the mantle.
Resumo:
Mining in the Iberian Pyrite Belt (IPB), the biggest VMS metallogenetic province known in the world to date, has to face a deep crisis in spite of the huge reserves still known after ≈5 000 years of production. This is due to several factors, as the difficult processing of complex Cu-Pb-Zn-Ag- Au ores, the exhaustion of the oxidation zone orebodies (the richest for gold, in gossan), the scarce demand for sulphuric acid in the world market, and harder environmental regulations. Of these factors, only the first and the last mentioned can be addressed by local ore geologists. A reactivation of mining can therefore only be achieved by an improved and more efficient ore processing, under the constraint of strict environmental controls. Digital image analysis of the ores, coupled to reflected light microscopy, provides a quantified and reliable mineralogical and textural characterization of the ores. The automation of the procedure for the first time furnishes the process engineers with real-time information, to improve the process and to preclude or control pollution; it can be applied to metallurgical tailings as well. This is shown by some examples of the IPB.
Resumo:
Recent research has discovered high-grade Au ores in NNE-SSW trending shear zones in metamorphic proterozoic and palaeozoic terranes, some 40 km NW of Santiago de Compostela (NW Spain). The orebodies are bound to late-stage Hercynian structures, mainly due to brittle deformation, which are superimposed on earlier ductile shear zones, cutting through various catazonal lithologies, including ortho- and paragneisses, amphibolites, eclogites, and granites. Ore mineralogy, alteration, and ore textures define a frame whose main features are common to all prospects in the area. Main minerals are arsenopyrite and pyrite - accompanied by quartz, adularia, sericite, + (tourmaline, chlorite, carbonates, graphite), as main gangue minerals - with subordinate amounts of boulangerite, bismuthinite, kobellite, jamesonite, chalcopyrite, marcasite, galena, sphalerite, rutile, titanite, scheelite, beryl, fluorite, and minor native gold, electrum, native bismuth, fahlore, pyrrhotite, mackinawite, etc., defining a meso-catathermal paragenesis. Detailed microscopic study allows the author to propose a general descriptive scheme of textural classification for this type of ore. Most of the ores fill open spaces or veins, seal cracks or cement breccias; disseminated ores with replacement features related to alteration (mainly silicification, sericitization, and adularization) are also observed. Intensive and repeated cataclasis is a common feature of many ores, suggesting successive events of brittle deformation, hydrothermal flow, and ore precipitation. Gold may be transported and accumulated in any of these events, but tends to be concentrated in later ones. The origin of the gold ores is explained in terms of hydrotherreal discharge, associated with mainly brittle deformation and possibly related to granitic magmas, in the global tectonic frame of crustal evolution of West Galicia. The mineralogical and textural study suggests some criteria which will be of practical value for exploration and for ore processing. Ore grades can be improved by flotation of arsenopyrite. Non-conventional methods, such as pressure or bacterial leaching, may subsequently obtain a residue enriched in gold.
Resumo:
Weathering profiles overlying the Sapecado, Pico and Andaime iron ore deposits, Quadrilátero Ferrífero (QF), Minas Gerais, Brazil, reach depths of 150–400 m and host world-class supergene iron orebodies. In addition to hosting supergene ore bodies of global economic significance, weathered banded iron-formations at the Quadrilátero Ferrífero and elsewhere (e.g., Carajás, Hamersley) are postulated to underlie some of the most ancient continuously exposed weathering profiles on earth. Laser incremental-heating 40Ar/39Ar results for 69 grains of hollandite-group manganese oxides extracted from 23 samples collected at depths ranging from 5 to 150 m at the Sapecado, Pico and Andaime deposits reveal ages ranging from ca. 62 to 14 Ma. Older Mn-oxides occur near the surface, while younger Mn-oxides occur at depth. However, many samples collected at the weathering–bedrock interface yield ages in the 51–41 Ma range, suggesting that the weathering profiles in the Quadrilátero Ferrífero had already reached their present depth in the Paleogene. The antiquity of the weathering profiles in the Quadrilátero Ferrífero is comparable to the antiquity of dated weathering profiles on banded iron-formations in the Carajás Region (Brazil) and the Hamersley Province, Western Australia. The age versus depth distributions obtained in this study, but not available for other regions containing similar supergene iron deposits, suggest that little further advance of the weathering front has occurred in the Quadrilátero Ferrífero lateritic profiles during the Neogene. The results suggest that weathering in some of these ancient landscapes is not controlled by the steady-state advance of weathering fronts through time, but may reflect climatic and geomorphological conditions prevailing in a remote past. The geochronological results also confirm that the ancient landsurfaces in the Quadrilátero Ferrífero probably remained immune to erosion for tens of millions of years. Deep weathering, mostly in the Paleogene, combined with low erosion rates, account for the abundance and widespread distribution of supergene iron, manganese, and aluminum orebodies in this region.
Resumo:
This thesis is concerned with the role of diagenesis in forming ore deposits. Two sedimentary 'ore-types' have been examined; the Proterozoic copper-cobalt orebodies of the Konkola Basin on the Zambian Copperbelt, and the Permian Marl Slate of North East England. Facies analysis of the Konkola Basin shows the Ore-Shale to have formed in a subtidal to intertidal environment. A sequence of diagenetic events is outlined from which it is concluded that the sulphide ores are an integral part of the diagenetic process. Sulphur isotope data establish that the sulphides formed as a consequence of the bacterial reduction of sulphate, while the isotopic and geochemical composition of carbonates is shown to reflect changes in the compositions of diagenetic pore fluids. Geochemical studies indicate that the copper and cobalt bearing mineralising fluids probably had different sources. Veins which crosscut the orebodies contain hydrocarbon inclusions, and are shown to be of late diagenetic lateral secretion origin. RbiSr dating indicates that the Ore-Shale was subject to metamorphism at 529 A- 20 myrs. The sedimentology and petrology of the Marl Slate are described. Textural and geochemical studies suggest that much of the pyrite (framboidal) in the Marl Slate formed in an anoxic water column, while euhedral pyrite and base metal sulphides formed within the sediment during early diagenesis. Sulphur isotope data confirm that conditions were almost "ideal" for sulphide formation during Marl Slate deposition, the limiting factors in ore formation being the restricted supply of chalcophile elements. Carbon and oxygen isotope data, along with petrographic observations, indicate that much of the calcite and dolomite occurring in the Marl Slate is primary, and probably formed in isotopic equilibrium. A depositional model is proposed which explains all of the data presented and links the lithological variations with fluctuations in the anoxicioxic boundary layer of the water column.
Resumo:
The Ming deposit, Newfoundland Appalachians, is a metamorphosed (upper greenschist to lower amphibolite facies), Cambro-Ordovician, bimodalmafic volcanogenic massive sulfide (VMS) deposit that consists of several, spatially-associated, elongated orebodies composed of stratabound semimassive to massive sulfides and/or discordant sulfide stringers in a rhyodacitic footwall. Copper is the main commodity; however, the deposit contains precious metal-bearing zones with elevated Au grades. In this study, field observations, microscopy, and micro-analytical tools including electron microprobe, laser ablation inductively coupled plasma mass spectrometry, and secondary ion mass spectrometry were used to constrain the relative timing of precious metal emplacement, the physico-chemical conditions of hydrothermal fluid precipitation, and the sources of sulfur, precious metals, semi-metals and metals. The ore mineral assemblage is complex and indicates an intermediate sulfidation state. Pyrite and chalcopyrite are the dominant ore minerals with minor sphalerite and pyrrhotite, and trace galena, arsenopyrite and cubanite. Additional trace phases include tellurides, NiSb phases, sulfosalts, electrum, AgHg±Au alloys, and oxides. Silver phases and precious metals occur predominantly in semi-massive and massive sulfides as free grains, and as grains spatially associated with arsenopyrite and/or sulfosalts. Precious metal phases occurring between recrystallized pyrite and within cataclastic pyrite are rare. Hence, the complex ore assemblage and textures strongly suggest syngenetic precious metal emplacement, whereas metamorphism and deformation only internally and locally remobilized precious metal phases. The ore assemblage formed from reduced, acidic hydrothermal fluids over a range of temperatures (≈350 to below 260ºC). The abundance of telluride and Ag-bearing tetrahedrite, however, varies strongly between the different orebodies indicating variable ƒTe₂, ƒSe₂, mBi, and mSb within the hydrothermal fluids. The variations in the concentrations of semi-metals and metals (As, Bi, Hg, Sb, Se, Te), as well as Au and Ag, were due to variations in temperature but also to a likely contribution of magmatic fluids into the VMS hydrothermal system from presumably different geothermal reservoirs. Sulfur isotope studies indicate at least two sulfur sources: sulfur from thermochemically-reduced seawater sulfate and igneous sulfur. The source of igneous sulfur is the igneous footwall, direct magmatic fluid/volatiles, or both. Upper greenschist to lower amphibolite metamorphic conditions and deformation had no significant effect on the sulfur isotope composition of the sulfides at the Ming deposit.