945 resultados para Ordered subsets – Expectation maximization (OS-EM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A crucial method for investigating patients with coronary artery disease (CAD) is the calculation of the left ventricular ejection fraction (LVEF). It is, consequently, imperative to precisely estimate the value of LVEF--a process that can be done with myocardial perfusion scintigraphy. Therefore, the present study aimed to establish and compare the estimation performance of the quantitative parameters of the reconstruction methods filtered backprojection (FBP) and ordered-subset expectation maximization (OSEM). Methods: A beating-heart phantom with known values of end-diastolic volume, end-systolic volume, and LVEF was used. Quantitative gated SPECT/quantitative perfusion SPECT software was used to obtain these quantitative parameters in a semiautomatic mode. The Butterworth filter was used in FBP, with the cutoff frequencies between 0.2 and 0.8 cycles per pixel combined with the orders of 5, 10, 15, and 20. Sixty-three reconstructions were performed using 2, 4, 6, 8, 10, 12, and 16 OSEM subsets, combined with several iterations: 2, 4, 6, 8, 10, 12, 16, 32, and 64. Results: With FBP, the values of end-diastolic, end-systolic, and the stroke volumes rise as the cutoff frequency increases, whereas the value of LVEF diminishes. This same pattern is verified with the OSEM reconstruction. However, with OSEM there is a more precise estimation of the quantitative parameters, especially with the combinations 2 iterations × 10 subsets and 2 iterations × 12 subsets. Conclusion: The OSEM reconstruction presents better estimations of the quantitative parameters than does FBP. This study recommends the use of 2 iterations with 10 or 12 subsets for OSEM and a cutoff frequency of 0.5 cycles per pixel with the orders 5, 10, or 15 for FBP as the best estimations for the left ventricular volumes and ejection fraction quantification in myocardial perfusion scintigraphy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A crucial method for investigating patients with coronary artery disease (CAD) is the calculation of the left ventricular ejection fraction (LVEF). It is, consequently, imperative to precisely estimate the value of LVEF--a process that can be done with myocardial perfusion scintigraphy. Therefore, the present study aimed to establish and compare the estimation performance of the quantitative parameters of the reconstruction methods filtered backprojection (FBP) and ordered-subset expectation maximization (OSEM). METHODS: A beating-heart phantom with known values of end-diastolic volume, end-systolic volume, and LVEF was used. Quantitative gated SPECT/quantitative perfusion SPECT software was used to obtain these quantitative parameters in a semiautomatic mode. The Butterworth filter was used in FBP, with the cutoff frequencies between 0.2 and 0.8 cycles per pixel combined with the orders of 5, 10, 15, and 20. Sixty-three reconstructions were performed using 2, 4, 6, 8, 10, 12, and 16 OSEM subsets, combined with several iterations: 2, 4, 6, 8, 10, 12, 16, 32, and 64. RESULTS: With FBP, the values of end-diastolic, end-systolic, and the stroke volumes rise as the cutoff frequency increases, whereas the value of LVEF diminishes. This same pattern is verified with the OSEM reconstruction. However, with OSEM there is a more precise estimation of the quantitative parameters, especially with the combinations 2 iterations × 10 subsets and 2 iterations × 12 subsets. CONCLUSION: The OSEM reconstruction presents better estimations of the quantitative parameters than does FBP. This study recommends the use of 2 iterations with 10 or 12 subsets for OSEM and a cutoff frequency of 0.5 cycles per pixel with the orders 5, 10, or 15 for FBP as the best estimations for the left ventricular volumes and ejection fraction quantification in myocardial perfusion scintigraphy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purposes of this study were to characterize the performance of a 3-dimensional (3D) ordered-subset expectation maximization (OSEM) algorithm in the quantification of left ventricular (LV) function with (99m)Tc-labeled agent gated SPECT (G-SPECT), the QGS program, and a beating-heart phantom and to optimize the reconstruction parameters for clinical applications. METHODS: A G-SPECT image of a dynamic heart phantom simulating the beating left ventricle was acquired. The exact volumes of the phantom were known and were as follows: end-diastolic volume (EDV) of 112 mL, end-systolic volume (ESV) of 37 mL, and stroke volume (SV) of 75 mL; these volumes produced an LV ejection fraction (LVEF) of 67%. Tomographic reconstructions were obtained after 10-20 iterations (I) with 4, 8, and 16 subsets (S) at full width at half maximum (FWHM) gaussian postprocessing filter cutoff values of 8-15 mm. The QGS program was used for quantitative measurements. RESULTS: Measured values ranged from 72 to 92 mL for EDV, from 18 to 32 mL for ESV, and from 54 to 63 mL for SV, and the calculated LVEF ranged from 65% to 76%. Overall, the combination of 10 I, 8 S, and a cutoff filter value of 10 mm produced the most accurate results. The plot of the measures with respect to the expectation maximization-equivalent iterations (I x S product) revealed a bell-shaped curve for the LV volumes and a reverse distribution for the LVEF, with the best results in the intermediate range. In particular, FWHM cutoff values exceeding 10 mm affected the estimation of the LV volumes. CONCLUSION: The QGS program is able to correctly calculate the LVEF when used in association with an optimized 3D OSEM algorithm (8 S, 10 I, and FWHM of 10 mm) but underestimates the LV volumes. However, various combinations of technical parameters, including a limited range of I and S (80-160 expectation maximization-equivalent iterations) and low cutoff values (< or =10 mm) for the gaussian postprocessing filter, produced results with similar accuracies and without clinically relevant differences in the LV volumes and the estimated LVEF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impressive developments in X-ray imaging are associated with X-ray phase contrast computed tomography based on grating interferometry, a technique that provides increased contrast compared with conventional absorption-based imaging. A new "single-step" method capable of separating phase information from other contributions has been recently proposed. This approach not only simplifies data-acquisition procedures, but, compared with the existing phase step approach, significantly reduces the dose delivered to a sample. However, the image reconstruction procedure is more demanding than for traditional methods and new algorithms have to be developed to take advantage of the "single-step" method. In the work discussed in this paper, a fast iterative image reconstruction method named OSEM (ordered subsets expectation maximization) was applied to experimental data to evaluate its performance and range of applicability. The OSEM algorithm with different subsets was also characterized by comparison of reconstruction image quality and convergence speed. Computer simulations and experimental results confirm the reliability of this new algorithm for phase-contrast computed tomography applications. Compared with the traditional filtered back projection algorithm, in particular in the presence of a noisy acquisition, it furnishes better images at a higher spatial resolution and with lower noise. We emphasize that the method is highly compatible with future X-ray phase contrast imaging clinical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a new projector model specifically tailored for fast list-mode tomographic reconstructions in Positron emission tomography (PET) scanners with parallel planar detectors. The model provides an accurate estimation of the probability distribution of coincidence events defined by pairs of scintillating crystals. This distribution is parameterized with 2D elliptical Gaussian functions defined in planes perpendicular to the main axis of the tube of response (TOR). The parameters of these Gaussian functions have been obtained by fitting Monte Carlo simulations that include positron range, acolinearity of gamma rays, as well as detector attenuation and scatter effects. The proposed model has been applied efficiently to list-mode reconstruction algorithms. Evaluation with Monte Carlo simulations over a rotating high resolution PET scanner indicates that this model allows to obtain better recovery to noise ratio in OSEM (ordered-subsets, expectation-maximization) reconstruction, if compared to list-mode reconstruction with symmetric circular Gaussian TOR model, and histogram-based OSEM with precalculated system matrix using Monte Carlo simulated models and symmetries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new version of the TomoRebuild data reduction software package is presented, for the reconstruction of scanning transmission ion microscopy tomography (STIMT) and particle induced X-ray emission tomography (PIXET) images. First, we present a state of the art of the reconstruction codes available for ion beam microtomography. The algorithm proposed here brings several advantages. It is a portable, multi-platform code, designed in C++ with well-separated classes for easier use and evolution. Data reduction is separated in different steps and the intermediate results may be checked if necessary. Although no additional graphic library or numerical tool is required to run the program as a command line, a user friendly interface was designed in Java, as an ImageJ plugin. All experimental and reconstruction parameters may be entered either through this plugin or directly in text format files. A simple standard format is proposed for the input of experimental data. Optional graphic applications using the ROOT interface may be used separately to display and fit energy spectra. Regarding the reconstruction process, the filtered backprojection (FBP) algorithm, already present in the previous version of the code, was optimized so that it is about 10 times as fast. In addition, Maximum Likelihood Expectation Maximization (MLEM) and its accelerated version Ordered Subsets Expectation Maximization (OSEM) algorithms were implemented. A detailed user guide in English is available. A reconstruction example of experimental data from a biological sample is given. It shows the capability of the code to reduce noise in the sinograms and to deal with incomplete data, which puts a new perspective on tomography using low number of projections or limited angle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subtraction of Ictal SPECT Co-registered to MRI (SISCOM) is an imaging technique used to localize the epileptogenic focus in patients with intractable partial epilepsy. The aim of this study was to determine the accuracy of registration algorithms involved in SISCOM analysis using FocusDET, a new user-friendly application. To this end, Monte Carlo simulation was employed to generate realistic SPECT studies. Simulated sinograms were reconstructed by using the Filtered BackProjection (FBP) algorithm and an Ordered Subsets Expectation Maximization (OSEM) reconstruction method that included compensation for all degradations. Registration errors in SPECT-SPECT and SPECT-MRI registration were evaluated by comparing the theoretical and actual transforms. Patient studies with well-localized epilepsy were also included in the registration assessment. Global registration errors including SPECT-SPECT and SPECT-MRI registration errors were less than 1.2 mm on average, exceeding the voxel size (3.32 mm) of SPECT studies in no case. Although images reconstructed using OSEM led to lower registration errors than images reconstructed with FBP, differences after using OSEM or FBP in reconstruction were less than 0.2 mm on average. This indicates that correction for degradations does not play a major role in the SISCOM process, thereby facilitating the application of the methodology in centers where OSEM is not implemented with correction of all degradations. These findings together with those obtained by clinicians from patients via MRI, interictal and ictal SPECT and video-EEG, show that FocusDET is a robust application for performing SISCOM analysis in clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: A fully three-dimensional (3D) massively parallelizable list-mode ordered-subsets expectation-maximization (LM-OSEM) reconstruction algorithm has been developed for high-resolution PET cameras. System response probabilities are calculated online from a set of parameters derived from Monte Carlo simulations. The shape of a system response for a given line of response (LOR) has been shown to be asymmetrical around the LOR. This work has been focused on the development of efficient region-search techniques to sample the system response probabilities, which are suitable for asymmetric kernel models, including elliptical Gaussian models that allow for high accuracy and high parallelization efficiency. The novel region-search scheme using variable kernel models is applied in the proposed PET reconstruction algorithm. Methods: A novel region-search technique has been used to sample the probability density function in correspondence with a small dynamic subset of the field of view that constitutes the region of response (ROR). The ROR is identified around the LOR by searching for any voxel within a dynamically calculated contour. The contour condition is currently defined as a fixed threshold over the posterior probability, and arbitrary kernel models can be applied using a numerical approach. The processing of the LORs is distributed in batches among the available computing devices, then, individual LORs are processed within different processing units. In this way, both multicore and multiple many-core processing units can be efficiently exploited. Tests have been conducted with probability models that take into account the noncolinearity, positron range, and crystal penetration effects, that produced tubes of response with varying elliptical sections whose axes were a function of the crystal's thickness and angle of incidence of the given LOR. The algorithm treats the probability model as a 3D scalar field defined within a reference system aligned with the ideal LOR. Results: This new technique provides superior image quality in terms of signal-to-noise ratio as compared with the histogram-mode method based on precomputed system matrices available for a commercial small animal scanner. Reconstruction times can be kept low with the use of multicore, many-core architectures, including multiple graphic processing units. Conclusions: A highly parallelizable LM reconstruction method has been proposed based on Monte Carlo simulations and new parallelization techniques aimed at improving the reconstruction speed and the image signal-to-noise of a given OSEM algorithm. The method has been validated using simulated and real phantoms. A special advantage of the new method is the possibility of defining dynamically the cut-off threshold over the calculated probabilities thus allowing for a direct control on the trade-off between speed and quality during the reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the Expectation Maximization algorithm (EM) applied to operational modal analysis of structures. The EM algorithm is a general-purpose method for maximum likelihood estimation (MLE) that in this work is used to estimate state space models. As it is well known, the MLE enjoys some optimal properties from a statistical point of view, which make it very attractive in practice. However, the EM algorithm has two main drawbacks: its slow convergence and the dependence of the solution on the initial values used. This paper proposes two different strategies to choose initial values for the EM algorithm when used for operational modal analysis: to begin with the parameters estimated by Stochastic Subspace Identification method (SSI) and to start using random points. The effectiveness of the proposed identification method has been evaluated through numerical simulation and measured vibration data in the context of a benchmark problem. Modal parameters (natural frequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using SSI and the EM algorithm. On the whole, the results show that the application of the EM algorithm starting from the solution given by SSI is very useful to identify the vibration modes of a structure, discarding the spurious modes that appear in high order models and discovering other hidden modes. Similar results are obtained using random starting values, although this strategy allows us to analyze the solution of several starting points what overcome the dependence on the initial values used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a time-domain stochastic system identification method based on maximum likelihood estimation (MLE) with the expectation maximization (EM) algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. The benchmark structure is a four-story, two-bay by two-bay steel-frame scale model structure built in the Earthquake Engineering Research Laboratory at the University of British Columbia, Canada. This paper focuses on Phase I of the analytical benchmark studies. A MATLAB-based finite element analysis code obtained from the IASC-ASCE SHM Task Group web site is used to calculate the dynamic response of the prototype structure. A number of 100 simulations have been made using this MATLAB-based finite element analysis code in order to evaluate the proposed identification method. There are several techniques to realize system identification. In this work, stochastic subspace identification (SSI)method has been used for comparison. SSI identification method is a well known method and computes accurate estimates of the modal parameters. The principles of the SSI identification method has been introduced in the paper and next the proposed MLE with EM algorithm has been explained in detail. The advantages of the proposed structural identification method can be summarized as follows: (i) the method is based on maximum likelihood, that implies minimum variance estimates; (ii) EM is a computational simpler estimation procedure than other optimization algorithms; (iii) estimate more parameters than SSI, and these estimates are accurate. On the contrary, the main disadvantages of the method are: (i) EM algorithm is an iterative procedure and it consumes time until convergence is reached; and (ii) this method needs starting values for the parameters. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using both the SSI method and the proposed MLE + EM method. The numerical results show that the proposed method identifies eigenfrequencies, damping ratios and mode shapes reasonably well even in the presence of 10% measurement noises. These modal parameters are more accurate than the SSI estimated modal parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a time-domain stochastic system identification method based on Maximum Likelihood Estimation and the Expectation Maximization algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated applying the proposed identification method to a set of 100 simulated cases. The numerical results show that the proposed method estimates all the modal parameters reasonably well in the presence of 30% measurement noise even. Finally, advantages and disadvantages of the method have been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain dopamine transporters imaging by Single Photon Emission Tomography (SPECT) with 123I-FP-CIT has become an important tool in the diagnosis and evaluation of parkinsonian syndromes, since this radiopharmaceutical exhibits high affinity for membrane transporters responsible for cellular reabsorption of dopamine on the striatum. However, Ordered Subset Expectation Maximization (OSEM) is the method recommended in the literature for imaging reconstruction. Filtered Back Projection (FBP) is still used due to its fast processing, even if it presents some disadvantages. The aim of this work is to investigate the influence of reconstruction parameters for FBP in semiquantification of Brain Studies with 123I-FPCIT compared with those obtained with OSEM recommended reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A imagem de transportadores cerebrais da dopamina com recurso à tomografia por emissão de fotão único com 123I-FP-CIT tornou-se uma ferramenta importante no diagnóstico e avaliação de síndromes parkinsonianos. Embora o algoritmo de reconstrução de imagem Ordered Subset Expectation Maximization (OSEM) seja o método mais recomendado na literatura para reconstrução da imagem, o Filtered Back Projection (FBP) é ainda usado devido à sua rapidez. O objetivo deste trabalho é investigar a influência dos parâmetros de reconstrução para FBP na semiquantificação em estudos cerebrais com 123I-FPCIT em comparação com os obtidos com a reconstrução recomendada por OSEM.