9 resultados para Orchardgrass
Resumo:
One hundred and eight samples from three cultivars of alfalfa were obtained from three cuttings in 1996-1998 to evaluate the relationship between crude protein (CP) and mineral concentrations of alfalfa with cutting and maturation. The CP content drastically decreased from 27.9 to 11.4% on DM with maturity. Highly positive correlations were observed between CP and K in the first and the second cutting of alfalfa. The Ca content remained almost constant throughout the growth period. Four multiparous Holstein cows were assigned an alfalfa silage diet or an orchardgrass silage diet from 3 weeks prepartum to 1 week postpartum to examine the effect on the mineral balance. In the prepartum and postpartum diet, the roughage to concentrate ratio was 70:30 and 50:50, with alfalfa being 50 and 100% of the roughage, respectively. The alfalfa contained 1.93% of K. No metabolic disorders occurred, but the body weight decreased drastically from 1 to 6 days postpartum with each diet because of the high milk production immediately after the parturition. Positive retention of N, Ca, P, Mg, and K was observed prepartum, whereas the cows had negative N and mineral retention from 2 to 4 days postpartum. The Ca and P absorption, and Mg retention of cows with the alfalfa diet were higher than with the grass diet. The plasma Ca and inorganic P were not affected by diet, but the plasma PTH at parturition and plasma hydroxyproline from 1 week prepartum to 1 week postpartum were higher with the alfalfa diet. These results suggest that the low K alfalfa is suitable not only to prevent the incidence of milk fever but also to increase Ca, P and Mg utilization of periparturient cows, but the mineral supplementation is needed for the postpartum cows immediately after the parturition. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We compared habitat features of Golden-winged Warbler (Vermivora chrysoptera) territories in the presence and absence of the Blue-winged Warbler (V. cyanoptera) on reclaimed coal mines in southeastern Kentucky, USA. Our objective was to determine whether there are species specific differences in habitat that can be manipulated to encourage population persistence of the Golden-winged Warbler. When compared with Blue-winged Warblers, Golden-winged Warblers established territories at higher elevations and with greater percentages of grass and canopy cover. Mean territory size (minimum convex polygon) was 1.3 ha (se = 0.1) for Golden-winged Warbler in absence of Blue-winged Warbler, 1.7 ha (se = 0.3) for Golden-winged Warbler coexisting with Blue-winged Warbler, and 2.1 ha (se = 0.3) for Blue-winged Warbler. Territory overlap occurred within and between species (18 of n = 73 territories, 24.7%). All Golden-winged and Blue-winged Warblers established territories that included an edge between reclaimed mine land and mature forest, as opposed to establishing territories in open grassland/shrubland habitat. The mean distance territories extended from a forest edge was 28.0 m (se = 3.8) for Golden-winged Warbler in absence of Blue-winged Warbler, 44.7 m (se = 5.7) for Golden-winged Warbler coexisting with Blue-winged Warbler, and 33.1 m (se = 6.1) for Blue-winged Warbler. Neither territory size nor distances to forest edges differed significantly between Golden-winged Warbler in presence or absence of Blue-winged Warbler. According to Monte Carlo analyses, orchardgrass (Dactylis glomerata), green ash (Fraxinus pennsylvanica) seedlings and saplings, and black locust (Robinia pseudoacacia) saplings were indicative of sites with only Golden-winged Warblers. Sericea lespedeza, goldenrod (Solidago spp.), clematis vine (Clematis spp.), and blackberry (Rubus spp.) were indicative of sites where both species occurred. Our findings complement recent genetic studies and add another factor for examining Golden-winged Warbler population decline. Further, information from our study will aid land managers in manipulating habitat for the Golden-winged Warbler.
Resumo:
Animal production, hay production and feeding, and the yields and composition of forage from summer and winter grass-legume pastures and winter corn crop residue fields from a year-round grazing system were compared with those of a conventional system. The year-round grazing system utilized 1.67 acres of smooth bromegrass-orchardgrass-birdsfoot trefoil pasture per cow in the summer, and 1.25 acres of stockpiled tall fescue-red clover pasture per cow, 1.25 acres of stockpiled smooth bromegrass-red clover pasture per cow, and 1.25 acres of corn crop residues per cow during winter for spring- and fall-calving cows and stockers. First-cutting hay was harvested from the tall fescue-red clover and smooth bromegrass-red clover pastures to meet supplemental needs of cows and calves during winter. In the conventional system (called the minimal land system), spring-calving cows grazed smooth bromegrass-orchardgrass-birdsfoot trefoil pastures at 3.33 acres/cow during summer with first cutting hay removed from one-half of these acres. This hay was fed to these cows in a drylot during winter. All summer grazing was done by rotational stocking for both systems, and winter grazing of the corn crop residues and stockpiled forages for pregnant spring-calving cows and lactating fall-calving cows in the year-round system was managed by strip-stocking. Hay was fed to springcalving cows in both systems to maintain a mean body condition score of 5 on a 9-point scale, but was fed to fall-calving cows to maintain a mean body condition score of greater than 3. Over winter, fall-calving cows lost more body weight and condition than spring calving cows, but there were no differences in body weight or condition score change between spring-calving cows in either system. Fall- and spring-calving cows in the yearround grazing system required 934 and 1,395 lb. hay dry matter/cow for maintenance during the winter whereas spring-calving cows in drylot required 4,776 lb. hay dry matter/cow. Rebreeding rates were not affected by management system. Average daily gains of spring-born calves did not differ between systems, but were greater than fall calves. Because of differences in land areas for the two systems, weight production of calves per acre of cows in the minimal land system was greater than those of the year-round grazing system, but when the additional weight gains of the stocker cattle were considered, production of total growing animals did not differ between the two systems.
Resumo:
A year-round grazing system for spring- and fall-calving cows was developed to compare animal production and performance, hay production and feeding, winter forage composition changes, and summer pasture yield and nutrient composition to that from a conventional, or minimal land system. Systems compared forage from smooth bromegrass-orchardgrass-birdsfoot trefoil pastures for both systems in the summer and corn crop residues and stockpiled grass-legume pastures for the year-round system to drylot hay feeding during winter for the minimal land system. The year-round grazing system utilized 1.67 acres of smooth bromegrassorchardgrass- birdsfoot trefoil (SB-O-T) pasture per cow in the summer, compared with 3.33 acres of (SB-O-T) pasture per cow in the control (minimal land) system. In addition to SB-O-T pastures, the year-round grazing system utilized 2.5 acres of tall fescue-red clover (TFRC) and 2.5 acres of smooth bromegrass-red clover (SBRC) per cow for grazing in both mid-summer and winter for fall- and spring-calving cows, respectively. First-cutting hay was harvested from the TF-RC and SB-RC pastures, and regrowth was grazed for approximately 45 days in the summer. These pastures were then fertilized with 40 lbs N/acre and stockpiled for winter grazing. Also utilized during the winter for spring-calving cows in the year-round grazing system were corn crop residue (CCR) pastures at an allowance of 2.5 acres per cow. In the minimal land system, hay was harvested from three-fourths of the area in SB-O-T pastures and stored for feeding in a drylot through the winter. Summer grazing was managed with rotational stocking for both systems, and winter grazing of stockpiled forages and corn crop residues by year-round system cows was managed by strip-stocking. Hay was fed to maintain a body condition score of 5 on a 9 point scale for spring-calving cows in both systems. Hay was supplemented as needed to maintain a body condition score of 3 for fall-calving cows nursing calves through the winter. Although initial condition scores for cows in both systems were different at the initiation of grazing for both winter and summer, there were no significant differences (P > .05) in overall condition score changes throughout both grazing seasons. In year 1, fall-calving cows in the year-round grazing system lost more (P < .05) body weight during winter than spring-calving cows in either system. In year 2, there were no differences seen in weight changes over winter for any group of cows. Average daily gains of fall calves in the yearround system were 1.9 lbs/day compared with weight gains of 2.5 lbs/day for spring calves from both systems. Yearly growing animal production from pastures for both years did not differ between systems when weight gains of stockers that grazed summer pastures in the year-round grazing system were added to weight gains of suckling calves. Carcass characteristics for all calves finished in the feedlot for both systems were similar. There were no significant differences in hay production between systems for year 1; however, amounts of hay needed to maintain cows were 923, 1373, 4732 lbs dry matter/cow for year-round fall-calving, year-round spring-calving, and minimal land spring-calving cows, respectively. In year 2, hay production per acre in the minimal land system was greater (P < .05) than for the year-round system, but the amounts of hay required per cow were 0, 0, and 4720 lbs dry matter/cow for yearround fall-calving, year-round spring-calving, and minimal land spring-calving cows, respectively.
Resumo:
A comparison was made between two different summer grazing systems. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass--orchardgrass--birdsfoot trefoil pastures and winter stockpiles pastures with cowcalf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass--orchardgrass-- birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures and one fourth of the allocated summer pastures. Cow-calf pairs grazing in the year-round system utilized on fourth of the winter stockpile pastures due to lack of forage, whereas cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer. Grazing system did not affect cow body weight, condition score, or daily calf weight gain. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level.
Resumo:
A comparison was made between two different summer grazing systems at the McNay Research Farm. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil pastures and winter stockpile pastures with cow-calf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures in 1996 (Yr. 1) and all the pasture in 1997 (Yr. 2). One hay removal occurred on one fourth of the allocated summer pastures in Year 1 and one half of the pastures in Year 2. In Year one, cow-calf pairs grazing in the year-round system utilized one fourth of the winter stockpile pastures due to a lack of forage on the summer pastures, whereas in Year 2 cowcalf pairs grazed winter stockpile pastures to remove forage as a second cutting of hay. Cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer of Year 1 due to lack of grazable forage; in Year 2, no supplementation was needed. Grazing system did not affect cow body weight, condition score, or daily calf gain in either year. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level in Year 1 and Year 2. The year-round system also produced more net winter forage than did the minimal land system in Year 1. Differences in forage yield and quality were only observed between winter stockpile forages of tall fescue-red clover and smooth bromegrass-red clover and summer pastures during the months of June, July, and August.
Resumo:
A series of trials to increase understanding of the summer dormancy trait in Dactylis glomerata was conducted. Autumn-sown reproductive and younger, spring-sown plants of 2 drought-resistant cultivars, contrasting for summer dormancy, were established and then tested in summer 2002 under long drought, drought + midsummer storm, or full irrigation. The autumn-sown reproductive plants of cv. Kasbah were summer dormant under all moisture regimes and exhibited the characteristic traits including growth cessation, rapid herbage senescence, and dehydration of surviving organs (-6.7MPa). Cultivar Kasbah used 8% less soil water over the summer and also began to rehydrate its leaf bases from conserved soil water before the drought broke. The non-dormant cv. Medly grew for 10 days longer under drought and whenever moisture was applied; Medly also responded to the storm with a decline in dehydrin expression in leaf bases, whereas no decline occurred in Kasbah, presumably because it remained dormant and therefore much drier. The irrigated, younger, spring-sown swards of cv. Kasbah had restrained growth and produced only about 25% of the herbage of cv. Medly. Drought reduced activity and growth of young plants of both cultivars, but whereas Medly regrew in response to the storm, cv. Kasbah did not, indicating that dormancy, although only partially expressed after spring sowing, was reinforced by summer drought. A longer drought in 2003 caused a 22% loss of the basal cover in cv. Medly, whereas Kasbah fully maintained its sward and therefore produced a higher post-drought autumn yield. This work confirms summer dormancy as a powerful trait for improving persistence over long, dry summers.
Resumo:
Les travaux sur la nutrition en vitamines B des ruminants montrent des résultats très variés sur les quantités de ces nutriments disponibles pour l’animal selon la nature de la ration. Ces divergences sont dues à des changements des populations microbiennes dans le rumen, causées par les facteurs physico-chimiques de la ration. Une amélioration de la compréhension des effets de la nature de la diète sur la synthèse et l’utilisation des vitamines B dans le rumen pourrait aider à identifier les conditions sous lesquelles une supplémentation en ces vitamines serait bénéfique pour la vache. Le but de ce travail de thèse est donc d’améliorer la compréhension des effets de l’espèce fourragère, de la maturité et de la longueur des particules de fourrage sur les apports en vitamines B chez la vache laitière. Pour évaluer chacune de ces variables, les concentrations de thiamine, riboflavine, niacine, vitamine B6, folates et vitamine B12 ont été mesurées dans les échantillons d’aliments et de digesta duodénal recueillis lors de trois projets réalisés à l’Université du Michigan par l’équipe du Dr. M. Allen. Dans la première étude, l’effet de l’espèce fourragère des ensilages a été évalué au cours de deux expériences similaires durant lesquelles les vaches recevaient une diète à base d’ensilage de luzerne ou de dactyle. Les diètes à base de luzerne ont été associées à une augmentation de la dégradation de la thiamine et de la vitamine B6 dans le rumen par rapport aux diètes à base d’ensilage de dactyle. La deuxième étude visait à évaluer les effets de la maturité des plantes lors de la mise en silo sur les quantités de vitamines B disponibles pour la vache; les deux expériences se différenciaient par l’espèce fourragère étudiée, soit la luzerne ou le dactyle. Une récolte à un stade de maturité plus élevé a augmenté les flux duodénaux de thiamine, de niacine et de folates lorsque les vaches recevaient des diètes à base d’ensilage de luzerne mais n’a diminué que le flux duodénal de riboflavine chez les animaux recevant des diètes à base d’ensilage de dactyle. La troisième étude a comparé les effets de la longueur de coupe (10 vs. 19 mm) d’ensilages de luzerne et de dactyle sur le devenir des vitamines B dans le système digestif de la vache laitière. Cette étude a permis de constater qu’une augmentation du temps de séchage au champ diminuait les concentrations de vitamines B dans les ensilages. Cependant, la taille des particules des ensilages de luzerne et de dactyle n’a pas affecté les quantités des vitamines B arrivant au duodénum des vaches. En général, les résultats de ces études montrent qu’il existe une corrélation négative entre la synthèse de riboflavine, de niacine et de vitamine B6 et leur ingestion, suggérant une possible régulation de la quantité de ces vitamines B par les microorganismes du rumen. De plus, l’ingestion d’amidon et d’azote a été corrélée positivement avec la synthèse de thiamine, de folates et de vitamine B12, et négativement avec la synthèse de niacine. Ces corrélations suggèrent que les microorganismes qui utilisent préférentiellement l’amidon jouent un rôle majeur pour la synthèse ou la dégradation de ces vitamines. De plus, la présence d’une quantité suffisante d’azote semble avoir un impact majeur sur ces processus. La suite de ces travaux devrait viser la modélisation de ces données afin de mieux appréhender la physiologie de la digestion de ces vitamines et permettre la création de modèles mathématiques capables de prédire les quantités de vitamines disponibles pour les vaches. Ces modèles permettront, lorsqu’intégrés aux logiciels de formulation de ration, d’élaborer une diète plus précise, ce qui améliorera la santé du troupeau et la performance laitière et augmentera les profits du producteur.