89 resultados para Oracles
Resumo:
We construct two efficient Identity-Based Encryption (IBE) systems that admit selective-identity security reductions without random oracles in groups equipped with a bilinear map. Selective-identity secure IBE is a slightly weaker security model than the standard security model for IBE. In this model the adversary must commit ahead of time to the identity that it intends to attack, whereas in an adaptive-identity attack the adversary is allowed to choose this identity adaptively. Our first system—BB1—is based on the well studied decisional bilinear Diffie–Hellman assumption, and extends naturally to systems with hierarchical identities, or HIBE. Our second system—BB2—is based on a stronger assumption which we call the Bilinear Diffie–Hellman Inversion assumption and provides another approach to building IBE systems. Our first system, BB1, is very versatile and well suited for practical applications: the basic hierarchical construction can be efficiently secured against chosen-ciphertext attacks, and further extended to support efficient non-interactive threshold decryption, among others, all without using random oracles. Both systems, BB1 and BB2, can be modified generically to provide “full” IBE security (i.e., against adaptive-identity attacks), either using random oracles, or in the standard model at the expense of a non-polynomial but easy-to-compensate security reduction.
Resumo:
We describe a short signature scheme that is strongly existentially unforgeable under an adaptive chosen message attack in the standard security model. Our construction works in groups equipped with an efficient bilinear map, or, more generally, an algorithm for the Decision Diffie-Hellman problem. The security of our scheme depends on a new intractability assumption we call Strong Diffie-Hellman (SDH), by analogy to the Strong RSA assumption with which it shares many properties. Signature generation in our system is fast and the resulting signatures are as short as DSA signatures for comparable security. We give a tight reduction proving that our scheme is secure in any group in which the SDH assumption holds, without relying on the random oracle model.
Resumo:
Since its induction, the selective-identity (sID) model for identity-based cryptosystems and its relationship with various other notions of security has been extensively studied. As a result, it is a general consensus that the sID model is much weaker than the full-identity (ID) model. In this paper, we study the sID model for the particular case of identity-based signatures (IBS). The main focus is on the problem of constructing an ID-secure IBS given an sID-secure IBS without using random oracles-the so-called standard model-and with reasonable security degradation. We accomplish this by devising a generic construction which uses as black-box: i) a chameleon hash function and ii) a weakly-secure public-key signature. We argue that the resulting IBS is ID-secure but with a tightness gap of O(q(s)), where q(s) is the upper bound on the number of signature queries that the adversary is allowed to make. To the best of our knowledge, this is the first attempt at such a generic construction.
Resumo:
This paper explores how audio chord estimation could improve if information about chord boundaries or beat onsets is revealed by an oracle. Chord estimation at the frame level is compared with three simulations, each using an oracle of increasing powers. The beat and chord segments revealed by an oracle are used to compute a chord ranking at the segment level, and to compute the cumulative probability of finding the correct chord among the top ranked chords. Oracle results on two different audio datasets demonstrate the substantial potential of segment versus frame approaches for chord audio estimation. This paper also provides a comparison of the oracle results on the Beatles dataset, the standard dataset in this area, with the new Billboard Hot 100 chord dataset.
Resumo:
Fast forward error correction codes are becoming an important component in bulk content delivery. They fit in naturally with multicast scenarios as a way to deal with losses and are now seeing use in peer to peer networks as a basis for distributing load. In particular, new irregular sparse parity check codes have been developed with provable average linear time performance, a significant improvement over previous codes. In this paper, we present a new heuristic for generating codes with similar performance based on observing a server with an oracle for client state. This heuristic is easy to implement and provides further intuition into the need for an irregular heavy tailed distribution.
Resumo:
Headed on the first page with the words "Nomenclatura hebraica," this handwritten volume is a vocabulary with the Hebrew word in the left column, and the English translation on the right. While the book is arranged in sections by letter, individual entries do not appear in strict alphabetical order. The small vocabulary varies greatly and includes entries like enigma, excommunication, and martyr, as well as cucumber and maggot. There are translations of the astrological signs at the end of the volume. Poem written at the bottom of the last page in different hand: "Women when good the best of saints/ that bright seraphick lovely/ she, who nothing of an angel/ wants but truth & immortality./ Verse 2: Who silken limbs & charming/ face. Keeps nature warm."