959 resultados para Optimization, Heuristics, spanning tree, combinatorial optimization
Resumo:
When designing metaheuristic optimization methods, there is a trade-off between application range and effectiveness. For large real-world instances of combinatorial optimization problems out-of-the-box metaheuristics often fail, and optimization methods need to be adapted to the problem at hand. Knowledge about the structure of high-quality solutions can be exploited by introducing a so called bias into one of the components of the metaheuristic used. These problem-specific adaptations allow to increase search performance. This thesis analyzes the characteristics of high-quality solutions for three constrained spanning tree problems: the optimal communication spanning tree problem, the quadratic minimum spanning tree problem and the bounded diameter minimum spanning tree problem. Several relevant tree properties, that should be explored when analyzing a constrained spanning tree problem, are identified. Based on the gained insights on the structure of high-quality solutions, efficient and robust solution approaches are designed for each of the three problems. Experimental studies analyze the performance of the developed approaches compared to the current state-of-the-art.
Resumo:
A hybridised and Knowledge-based Evolutionary Algorithm (KEA) is applied to the multi-criterion minimum spanning tree problems. Hybridisation is used across its three phases. In the first phase a deterministic single objective optimization algorithm finds the extreme points of the Pareto front. In the second phase a K-best approach finds the first neighbours of the extreme points, which serve as an elitist parent population to an evolutionary algorithm in the third phase. A knowledge-based mutation operator is applied in each generation to reproduce individuals that are at least as good as the unique parent. The advantages of KEA over previous algorithms include its speed (making it applicable to large real-world problems), its scalability to more than two criteria, and its ability to find both the supported and unsupported optimal solutions.
Resumo:
Text segmentation and localization algorithms are proposed for the born-digital image dataset. Binarization and edge detection are separately carried out on the three colour planes of the image. Connected components (CC's) obtained from the binarized image are thresholded based on their area and aspect ratio. CC's which contain sufficient edge pixels are retained. A novel approach is presented, where the text components are represented as nodes of a graph. Nodes correspond to the centroids of the individual CC's. Long edges are broken from the minimum spanning tree of the graph. Pair wise height ratio is also used to remove likely non-text components. A new minimum spanning tree is created from the remaining nodes. Horizontal grouping is performed on the CC's to generate bounding boxes of text strings. Overlapping bounding boxes are removed using an overlap area threshold. Non-overlapping and minimally overlapping bounding boxes are used for text segmentation. Vertical splitting is applied to generate bounding boxes at the word level. The proposed method is applied on all the images of the test dataset and values of precision, recall and H-mean are obtained using different approaches.
Resumo:
We present a method for producing dense Active Appearance Models (AAMs), suitable for video-realistic synthesis. To this end we estimate a joint alignment of all training images using a set of pairwise registrations and ensure that these pairwise registrations are only calculated between similar images. This is achieved by defining a graph on the image set whose edge weights correspond to registration errors and computing a bounded diameter minimum spanning tree (BDMST). Dense optical flow is used to compute pairwise registration and we introduce a flow refinement method to align small scale texture. Once registration between training images has been established we propose a method to add vertices to the AAM in a way that minimises error between the observed flow fields and a flow field interpolated between the AAM mesh points. We demonstrate a significant improvement in model compactness using the proposed method and show it dealing with cases that are problematic for current state-of-the-art approaches.
Resumo:
A fast Knowledge-based Evolution Strategy, KES, for the multi-objective minimum spanning tree, is presented. The proposed algorithm is validated, for the bi-objective case, with an exhaustive search for small problems (4-10 nodes), and compared with a deterministic algorithm, EPDA and NSGA-II for larger problems (up to 100 nodes) using benchmark hard instances. Experimental results show that KES finds the true Pareto fronts for small instances of the problem and calculates good approximation Pareto sets for larger instances tested. It is shown that the fronts calculated by YES are superior to NSGA-II fronts and almost as good as those established by EPDA. KES is designed to be scalable to multi-objective problems and fast due to its small complexity.
Resumo:
Snow cleaning is one of the important tasks in the winter time in Sweden. Every year government spends huge amount money for snow cleaning purpose. In this thesis we generate a shortest road network of the city and put the depots in different place of the city for snow cleaning. We generate shortest road network using minimum spanning tree algorithm and find the depots position using greedy heuristic. When snow is falling, vehicles start work from the depots and clean the snow all the road network of the city. We generate two types of model. Models are economic model and efficient model. Economic model provide good economical solution of the problem and it use less number of vehicles. Efficient model generate good efficient solution and it take less amount of time to clean the entire road network.
Resumo:
This paper presents a novel approach to the computation of primitive geometrical structures, where no prior knowledge about the visual scene is available and a high level of noise is expected. We based our work on the grouping principles of proximity and similarity, of points and preliminary models. The former was realized using Minimum Spanning Trees (MST), on which we apply a stable alignment and goodness of fit criteria. As for the latter, we used spectral clustering of preliminary models. The algorithm can be generalized to various model fitting settings, without tuning of run parameters. Experiments demonstrate the significant improvement in the localization accuracy of models in plane, homography and motion segmentation examples. The efficiency of the algorithm is not dependent on fine tuning of run parameters like most others in the field.
Resumo:
Nesta tese abordam-se várias formulações e diferentes métodos para resolver o Problema da Árvore de Suporte de Custo Mínimo com Restrições de Peso (WMST – Weight-constrained Minimum Spanning Tree Problem). Este problema, com aplicações no desenho de redes de comunicações e telecomunicações, é um problema de Otimização Combinatória NP-difícil. O Problema WMST consiste em determinar, numa rede com custos e pesos associados às arestas, uma árvore de suporte de custo mínimo de tal forma que o seu peso total não exceda um dado limite especificado. Apresentam-se e comparam-se várias formulações para o problema. Uma delas é usada para desenvolver um procedimento com introdução de cortes baseado em separação e que se tornou bastante útil na obtenção de soluções para o problema. Tendo como propósito fortalecer as formulações apresentadas, introduzem-se novas classes de desigualdades válidas que foram adaptadas das conhecidas desigualdades de cobertura, desigualdades de cobertura estendida e desigualdades de cobertura levantada. As novas desigualdades incorporam a informação de dois conjuntos de soluções: o conjunto das árvores de suporte e o conjunto saco-mochila. Apresentam-se diversos algoritmos heurísticos de separação que nos permitem usar as desigualdades válidas propostas de forma eficiente. Com base na decomposição Lagrangeana, apresentam-se e comparam-se algoritmos simples, mas eficientes, que podem ser usados para calcular limites inferiores e superiores para o valor ótimo do WMST. Entre eles encontram-se dois novos algoritmos: um baseado na convexidade da função Lagrangeana e outro que faz uso da inclusão de desigualdades válidas. Com o objetivo de obter soluções aproximadas para o Problema WMST usam-se métodos heurísticos para encontrar uma solução inteira admissível. Os métodos heurísticos apresentados são baseados nas estratégias Feasibility Pump e Local Branching. Apresentam-se resultados computacionais usando todos os métodos apresentados. Os resultados mostram que os diferentes métodos apresentados são bastante eficientes para encontrar soluções para o Problema WMST.
Resumo:
The Quadratic Minimum Spanning Tree Problem (QMST) is a version of the Minimum Spanning Tree Problem in which, besides the traditional linear costs, there is a quadratic structure of costs. This quadratic structure models interaction effects between pairs of edges. Linear and quadratic costs are added up to constitute the total cost of the spanning tree, which must be minimized. When these interactions are restricted to adjacent edges, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). AQMST and QMST are NP-hard problems that model several problems of transport and distribution networks design. In general, AQMST arises as a more suitable model for real problems. Although, in literature, linear and quadratic costs are added, in real applications, they may be conflicting. In this case, it may be interesting to consider these costs separately. In this sense, Multiobjective Optimization provides a more realistic model for QMST and AQMST. A review of the state-of-the-art, so far, was not able to find papers regarding these problems under a biobjective point of view. Thus, the objective of this Thesis is the development of exact and heuristic algorithms for the Biobjective Adjacent Only Quadratic Spanning Tree Problem (bi-AQST). In order to do so, as theoretical foundation, other NP-hard problems directly related to bi-AQST are discussed: the QMST and AQMST problems. Bracktracking and branch-and-bound exact algorithms are proposed to the target problem of this investigation. The heuristic algorithms developed are: Pareto Local Search, Tabu Search with ejection chain, Transgenetic Algorithm, NSGA-II and a hybridization of the two last-mentioned proposals called NSTA. The proposed algorithms are compared to each other through performance analysis regarding computational experiments with instances adapted from the QMST literature. With regard to exact algorithms, the analysis considers, in particular, the execution time. In case of the heuristic algorithms, besides execution time, the quality of the generated approximation sets is evaluated. Quality indicators are used to assess such information. Appropriate statistical tools are used to measure the performance of exact and heuristic algorithms. Considering the set of instances adopted as well as the criteria of execution time and quality of the generated approximation set, the experiments showed that the Tabu Search with ejection chain approach obtained the best results and the transgenetic algorithm ranked second. The PLS algorithm obtained good quality solutions, but at a very high computational time compared to the other (meta)heuristics, getting the third place. NSTA and NSGA-II algorithms got the last positions
Resumo:
Combinatorial optimization problems have the goal of maximize or minimize functions defined over a finite domain. Metaheuristics are methods designed to find good solutions in this finite domain, sometimes the optimum solution, using a subordinated heuristic, which is modeled for each particular problem. This work presents algorithms based on particle swarm optimization (metaheuristic) applied to combinatorial optimization problems: the Traveling Salesman Problem and the Multicriteria Degree Constrained Minimum Spanning Tree Problem. The first problem optimizes only one objective, while the other problem deals with many objectives. In order to evaluate the performance of the algorithms proposed, they are compared, in terms of the quality of the solutions found, to other approaches
Resumo:
The Multiobjective Spanning Tree is a NP-hard Combinatorial Optimization problem whose application arises in several areas, especially networks design. In this work, we propose a solution to the biobjective version of the problem through a Transgenetic Algorithm named ATIS-NP. The Computational Transgenetic is a metaheuristic technique from Evolutionary Computation whose inspiration relies in the conception of cooperation (and not competition) as the factor of main influence to evolution. The algorithm outlined is the evolution of a work that has already yielded two other transgenetic algorithms. In this sense, the algorithms previously developed are also presented. This research also comprises an experimental analysis with the aim of obtaining information related to the performance of ATIS-NP when compared to other approaches. Thus, ATIS-NP is compared to the algorithms previously implemented and to other transgenetic already presented for the problem under consideration. The computational experiments also address the comparison to two recent approaches from literature that present good results, a GRASP and a genetic algorithms. The efficiency of the method described is evaluated with basis in metrics of solution quality and computational time spent. Considering the problem is within the context of Multiobjective Optimization, quality indicators are adopted to infer the criteria of solution quality. Statistical tests evaluate the significance of results obtained from computational experiments
Uma análise experimental de algoritmos exatos aplicados ao problema da árvore geradora multiobjetivo
Resumo:
The Multiobjective Spanning Tree Problem is NP-hard and models applications in several areas. This research presents an experimental analysis of different strategies used in the literature to develop exact algorithms to solve the problem. Initially, the algorithms are classified according to the approaches used to solve the problem. Features of two or more approaches can be found in some of those algorithms. The approaches investigated here are: the two-stage method, branch-and-bound, k-best and the preference-based approach. The main contribution of this research lies in the fact that no research was presented to date reporting a systematic experimental analysis of exact algorithms for the Multiobjective Spanning Tree Problem. Therefore, this work can be a basis for other research that deal with the same problem. The computational experiments compare the performance of algorithms regarding processing time, efficiency based on the number of objectives and number of solutions found in a controlled time interval. The analysis of the algorithms was performed for known instances of the problem, as well as instances obtained from a generator commonly used in the literature
Resumo:
Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.