794 resultados para Optimisation, Intermodal Terminals, Train Planning, Decision Support Systems
Resumo:
Many cities around the globe are now considering tourism facilities and their remarkable revenues in order to become competitive in the global economy. In many of these cities a great emphasis is given to the cultural tourism as it plays an important role in the establishment of creative and knowledge-base of cities. The literature points out the importance of local community support in cultural tourism. In such context, the use of new approach and technologies in tourism planning in order to increase the community participation and competitiveness of cities’ cultural assets gains a great significance. This paper advocates a new planning approach for tourism planning, particularly for cultural tourism, to increase the competitiveness of cities. As part of this new approach, the paper introduces the joined up planning approach integrated with a collaborative decision support system: ‘the community-oriented decision support system’. This collaborative planning support system is an effective and efficient tool for cultural tourism planning, which provides a platform for local communities’ participation in the development decision process.
Resumo:
A successful urban management support system requires an integrated approach. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism. The chapter emphasizes the importance of integrated urban management to better tackle the climate change, and to achieve sustainable urban development and sound urban growth management. This chapter introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for ubiquitous cities. The chapter discusses the essential role of online collaborative decision making in urban and infrastructure planning, development and management, and advocates transparent, fully democratic and participatory mechanisms for an effective urban management system that is particularly suitable for ubiquitous cities. This chapter also sheds light on some of the unclear processes of urban management of ubiquitous cities and online collaborative decision making, and reveals the key benefits of integrated and participatory mechanisms in successfully constructing sustainable ubiquitous cities.
Resumo:
Introduction Among the many requirements of establishing community health, a healthy urban environment stands out as significant one. A healthy urban environment constantly changes and improves community well-being and expands community resources. The promotion efforts for such an environment, therefore, must include the creation of structures and processes that actively work to dismantle existing community inequalities. In general, these processes are hard to manage; therefore, they require reliable planning and decision support systems. Current and previous practices justify that the use of decision support systems in planning for healthy communities have significant impacts on the communities. These impacts include but are not limited to: increasing collaboration between stakeholders and the general public; improving the accuracy and quality of the decision making process; enhancing healthcare services; and improving data and information availability for health decision makers and service planners. Considering the above stated reasons, this study investigates the challenges and opportunities of planning for healthy communities with the specific aim of examining the effectiveness of participatory planning and decision systems in supporting the planning for such communities. Methods This study introduces a recently developed methodology, which is based on an online participatory decision support system. This new decision support system contributes to solve environmental and community health problems, and to plan for healthy communities. The system also provides a powerful and effective platform for stakeholders and interested members of the community to establish an empowered society and a transparent and participatory decision making environment. Results The paper discusses the preliminary findings from the literature review of this decision support system in a case study of Logan City, Queensland. Conclusion The paper concludes with future research directions and applicability of this decision support system in health service planning elsewhere.
Resumo:
Gold Coast Water is responsible for the management of the water and wastewater assets of the City of the Gold Coast on Australia’s east coast. Treated wastewater is released at the Gold Coast Seaway on an outgoing tide in order for the plume to be dispersed before the tide changes and renters the Broadwater estuary. Rapid population growth over the past decade has placed increasing demands on the receiving waters for the release of the City’s effluent. The Seaway SmartRelease Project is designed to optimise the release of the effluent from the City’s main wastewater treatment plant in order to minimise the impact of the estuarine water quality and maximise the cost efficiency of pumping. In order to do this an optimisation study that involves water quality monitoring, numerical modelling and a web based decision support system was conducted. An intensive monitoring campaign provided information on water levels, currents, winds, waves, nutrients and bacterial levels within the Broadwater. These data were then used to calibrate and verify numerical models using the MIKE by DHI suite of software. The decision support system then collects continually measured data such as water levels, interacts with the WWTP SCADA system, runs the models in forecast mode and provides the optimal time window to release the required amount of effluent from the WWTP. The City’s increasing population means that the length of time available for releasing the water with minimal impact may be exceeded within 5 years. Optimising the release of the treated water through monitoring, modelling and a decision support system has been an effective way of demonstrating the limited environmental impact of the expected short term increase in effluent disposal procedures. (PDF contains 5 pages)
Resumo:
This paper discusses an optimisation based decision support system and methodology for electronic packaging and product design and development which is capable of addressing in efficient manner specified environmental, reliability and cost requirements. A study which focuses on the design of a flip-chip package is presented. Different alternatives for the design of the flip-chip package are considered based on existing options for the applied underfill and volume of solder material used to form the interconnects. Variations in these design input parameters have simultaneous effect on package aspects such as cost, environmental impact and reliability. A decision system for the design of the flip-chip that uses numerical optimisation approach is used to identify the package optimal specification which satisfies the imposed requirements. The reliability aspect of interest is the fatigue of solder joints under thermal cycling. Transient nonlinear finite element analysis (FEA) is used to simulate the thermal fatigue damage in solder joints subject to thermal cycling. Simulation results are manipulated within design of experiments and response surface modelling framework to provide numerical model for reliability which can be used to quantify the package reliability. Assessment of the environmental impact of the package materials is performed by using so called Toxic Index (TI). In this paper we demonstrate the evaluation of the environmental impact only for underfill and lead-free solder materials. This evaluation is based on the amount of material per flip-chip package. Cost is the dominant factor in contemporary flip-chip packaging industry. In the optimisation based decision support system for the design of the flip-chip package, cost of materials which varies as a result of variations in the design parameters is considered.
Resumo:
The importance of broadening community participation in environmental decision-making is widely recognized and lack of participation in this process appears to be a perennial problem. In this context, there have been calls from some academics for the more extensive use of geographic information systems (GIS) and distance learning technologies, accessible via the Internet, as a possible means to inform and empower communities. However, a number of problems exist. For instance, at present the scope for online interaction between policy-makers and citizens is currently limited. Contemporary web-based environmental information systems suffer from this lack of interactivity on the one hand and on the other hand from the apparent complexity for the lay user. This paper explores the issue of online community participation at the local level and attempts to construct a framework for a new (and potentially more effective) model of online participatory decision-making. The key components, system architecture and stages of such a model are introduced. This model, referred to as a ‘Community Based Interactive Environmental Decision Support System’, incorporates advanced information technologies, distance learning and community involvement tools which will be applied and evaluated in the field through a pilot project in Tokyo in the summer of 2002.
Resumo:
The broad definition of sustainable development at the early stage of its introduction has caused confusion and hesitation among local authorities and planning professionals. The main difficulties are experience in employing loosely-defined principles of sustainable development in setting policies and goals. The question of how this theory/rhetoric-practice gap could be filled will be the theme of this study. One of the widely employed sustainability accounting approaches by governmental organisations, triple bottom line, and applicability of this approach to sustainable urban development policies will be examined. When incorporating triple bottom line considerations with the environmental impact assessment techniques, the framework of GIS-based decision support system that helps decision-makers in selecting policy option according to the economic, environmental and social impacts will be introduced. In order to embrace sustainable urban development policy considerations, the relationship between urban form, travel pattern and socio-economic attributes should be clarified. This clarification associated with other input decision support systems will picture the holistic state of the urban settings in terms of sustainability. In this study, grid-based indexing methodology will be employed to visualise the degree of compatibility of selected scenarios with the designated sustainable urban future. In addition, this tool will provide valuable knowledge about the spatial dimension of the sustainable development. It will also give fine details about the possible impacts of urban development proposals by employing disaggregated spatial data analysis (e.g. land-use, transportation, urban services, population density, pollution, etc.). The visualisation capacity of this tool will help decision makers and other stakeholders compare and select alternative of future urban developments.
Resumo:
Broad, early definitions of sustainable development have caused confusion and hesitation among local authorities and planning professionals. This confusion has arisen because loosely defined principles of sustainable development have been employed when setting policies and planning projects, and when gauging the efficiencies of these policies in the light of designated sustainability goals. The question of how this theory-rhetoric-practice gap can be filled is the main focus of this chapter. It examines the triple bottom line approach–one of the sustainability accounting approaches widely employed by governmental organisations–and the applicability of this approach to sustainable urban development. The chapter introduces the ‘Integrated Land Use and Transportation Indexing Model’ that incorporates triple bottom line considerations with environmental impact assessment techniques via a geographic, information systems-based decision support system. This model helps decision-makers in selecting policy options according to their economic, environmental and social impacts. Its main purpose is to provide valuable knowledge about the spatial dimensions of sustainable development, and to provide fine detail outputs on the possible impacts of urban development proposals on sustainability levels. In order to embrace sustainable urban development policy considerations, the model is sensitive to the relationship between urban form, travel patterns and socio-economic attributes. Finally, the model is useful in picturing the holistic state of urban settings in terms of their sustainability levels, and in assessing the degree of compatibility of selected scenarios with the desired sustainable urban future.
Resumo:
In this paper we discuss the strengths and weaknesses of a range of artificial intelligence approaches used in legal domains. Symbolic reasoning systems which rely on deductive, inductive and analogical reasoning are described and reviewed. The role of statistical reasoning in law is examined, and the use of neural networks analysed. There is discussion of architectures for, and examples of, systems which combine a number of these reasoning strategies. We conclude that to build intelligent legal decision support systems requires a range of reasoning strategies.
Resumo:
In this paper we provide an overview of a number of fundamental reasoning formalisms in artificial intelligence which can and have been used in modelling legal reasoning. We describe deduction, induction and analogical reasoning formalisms, and show how they can be used separately to model legal reasoning. We argue that these formalisms can be used together to model legal reasoning more accurately, and describe a number of attempts to integrate the approaches.