994 resultados para Optimal trajectories
Resumo:
In this paper, we are concerned with the practical implementation of time optimal numerical techniques on underwater vehicles. We briefly introduce the model of underwater vehicle we consider and present the parameters for the test bed ODIN (Omni-Directional Intelligent Navigator). Then we explain the numerical method used to obtain time optimal trajectories with a structure suitable for the implementation. We follow this with a discussion on the modifications to be made considering the characteristics of ODIN. Finally, we illustrate our computations with some experimental results.
Resumo:
Over the past few years, the common practice within air traffic management has been that commercial aircraft fly by following a set of predefined routes to reach their destination. Currently, aircraft operators are requesting more flexibility to fly according to their prefer- ences, in order to achieve their business objectives. Due to this reason, much research effort is being invested in developing different techniques which evaluate aircraft optimal trajectory and traffic synchronisation. Also, the inefficient use of the airspace using barometric altitude overall in the landing and takeoff phases or in Continuous Descent Approach (CDA) trajectories where currently it is necessary introduce the necessary reference setting (QNH or QFE). To solve this problem and to permit a better airspace management born the interest of this research. Where the main goals will be to evaluate the impact, weakness and strength of the use of geometrical altitude instead of the use of barometric altitude. Moreover, this dissertation propose the design a simplified trajectory simulator which is able to predict aircraft trajectories. The model is based on a three degrees of freedom aircraft point mass model that can adapt aircraft performance data from Base of Aircraft Data, and meteorological information. A feature of this trajectory simulator is to support the improvement of the strategic and pre-tactical trajectory planning in the future Air Traffic Management. To this end, the error of the tool (aircraft Trajectory Simulator) is measured by comparing its performance variables with actual flown trajectories obtained from Flight Data Recorder information. The trajectory simulator is validated by analysing the performance of different type of aircraft and considering different routes. A fuel consumption estimation error was identified and a correction is proposed for each type of aircraft model. In the future Air Traffic Management (ATM) system, the trajectory becomes the fundamental element of a new set of operating procedures collectively referred to as Trajectory-Based Operations (TBO). Thus, governmental institutions, academia, and industry have shown a renewed interest for the application of trajectory optimisation techniques in com- mercial aviation. The trajectory optimisation problem can be solved using optimal control methods. In this research we present and discuss the existing methods for solving optimal control problems focusing on direct collocation, which has received recent attention by the scientific community. In particular, two families of collocation methods are analysed, i.e., Hermite-Legendre-Gauss-Lobatto collocation and the pseudospectral collocation. They are first compared based on a benchmark case study: the minimum fuel trajectory problem with fixed arrival time. For the sake of scalability to more realistic problems, the different meth- ods are also tested based on a real Airbus 319 El Cairo-Madrid flight. Results show that pseudospectral collocation, which has shown to be numerically more accurate and computa- tionally much faster, is suitable for the type of problems arising in trajectory optimisation with application to ATM. Fast and accurate optimal trajectory can contribute properly to achieve the new challenges of the future ATM. As atmosphere uncertainties are one of the most important issues in the trajectory plan- ning, the final objective of this dissertation is to have a magnitude order of how different is the fuel consumption under different atmosphere condition. Is important to note that in the strategic phase planning the optimal trajectories are determined by meteorological predictions which differ from the moment of the flight. The optimal trajectories have shown savings of at least 500 [kg] in the majority of the atmosphere condition (different pressure, and temperature at Mean Sea Level, and different lapse rate temperature) with respect to the conventional procedure simulated at the same atmosphere condition.This results show that the implementation of optimal profiles are beneficial under the current Air traffic Management (ATM).
Resumo:
Autonomous underwater vehicles (AUVs) are increasingly used, both in military and civilian applications. These vehicles are limited mainly by the intelligence we give them and the life of their batteries. Research is active to extend vehicle autonomy in both aspects. Our intent is to give the vehicle the ability to adapt its behavior under different mission scenarios (emergency maneuvers versus long duration monitoring). This involves a search for optimal trajectories minimizing time, energy or a combination of both. Despite some success stories in AUV control, optimal control is still a very underdeveloped area. Adaptive control research has contributed to cost minimization problems, but vehicle design has been the driving force for advancement in optimal control research. We look to advance the development of optimal control theory by expanding the motions along which AUVs travel. Traditionally, AUVs have taken the role of performing the long data gathering mission in the open ocean with little to no interaction with their surroundings, MacIver et al. (2004). The AUV is used to find the shipwreck, and the remotely operated vehicle (ROV) handles the exploration up close. AUV mission profiles of this sort are best suited through the use of a torpedo shaped AUV, Bertram and Alvarez (2006), since straight lines and minimal (0 deg - 30 deg) angular displacements are all that are necessary to perform the transects and grid lines for these applications. However, the torpedo shape AUV lacks the ability to perform low-speed maneuvers in cluttered environments, such as autonomous exploration close to the seabed and around obstacles, MacIver et al. (2004). Thus, we consider an agile vehicle capable of movement in six degrees of freedom without any preference of direction.
Resumo:
Consideramos o problema de controlo óptimo de tempo mínimo para sistemas de controlo mono-entrada e controlo afim num espaço de dimensão finita com condições inicial e final fixas, onde o controlo escalar toma valores num intervalo fechado. Quando aplicamos o método de tiro a este problema, vários obstáculos podem surgir uma vez que a função de tiro não é diferenciável quando o controlo é bang-bang. No caso bang-bang os tempos conjugados são teoricamente bem definidos para este tipo de sistemas de controlo, contudo os algoritmos computacionais directos disponíveis são de difícil aplicação. Por outro lado, no caso suave o conceito teórico e prático de tempos conjugados é bem conhecido, e ferramentas computacionais eficazes estão disponíveis. Propomos um procedimento de regularização para o qual as soluções do problema de tempo mínimo correspondente dependem de um parâmetro real positivo suficientemente pequeno e são definidas por funções suaves em relação à variável tempo, facilitando a aplicação do método de tiro simples. Provamos, sob hipóteses convenientes, a convergência forte das soluções do problema regularizado para a solução do problema inicial, quando o parâmetro real tende para zero. A determinação de tempos conjugados das trajectórias localmente óptimas do problema regularizado enquadra-se na teoria suave conhecida. Provamos, sob hipóteses adequadas, a convergência do primeiro tempo conjugado do problema regularizado para o primeiro tempo conjugado do problema inicial bang-bang, quando o parâmetro real tende para zero. Consequentemente, obtemos um algoritmo eficiente para a computação de tempos conjugados no caso bang-bang.
Resumo:
This paper presents the generation of optimal trajectories by genetic algorithms (GA) for a planar robotic manipulator. The implemented GA considers a multi-objective function that minimizes the end-effector positioning error together with the joints angular displacement and it solves the inverse kinematics problem for the trajectory. Computer simulations results are presented to illustrate this implementation and show the efficiency of the used methodology producing soft trajectories with low computing cost. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
A priority when designing control strategies for autonomous underwater vehicles is to emphasize their cost of implementation on a real vehicle and at the same time to minimize a prescribed criterion such as time, energy, payload or combination of those. Indeed, the major issue is that due to the vehicles' design and the actuation modes usually under consideration for underwater platforms the number of actuator switchings must be kept to a small value to ensure feasibility and precision. This constraint is typically not verified by optimal trajectories which might not even be piecewise constants. Our goal is to provide a feasible trajectory that minimizes the number of switchings while maintaining some qualities of the desired trajectory, such as optimality with respect to a given criterion. The one-sided Lipschitz constant is used to derive theoretical estimates. The theory is illustrated on two examples, one is a fully actuated underwater vehicle capable of motion in six degrees-of-freedom and one is minimally actuated with control motions constrained to the vertical plane.
Resumo:
Single-species management objectives may not be consistent within mixed fisheries. They may lead species to unsafe situations, promote discarding of over-quota and/or misreporting of catches. We provide an algorithm for characterising bio-economic reference points for a mixed fishery as the steady-state solution of a dynamic optimal management problem. The optimisation problem takes into account: i) that species are fishing simultaneously in unselective fishing operations and ii)intertemporal discounting and fleet costs to relate reference points to discounted economic profits along optimal trajectories. We illustrate how the algorithm can be implemented by applying it to the European Northern Stock of Hake (Merluccius merluccius), where fleets also capture Northern megrim (Lepidorhombus whiffiagonis) and Northern anglerfish (Lophius piscatorius and Lophius budegassa). We find that optimal mixed management leads to a target reference point that is quite similar to the 2/3 of the Fmsy single-species (hake) target. Mixed management is superior to singlespecies management because it leads the fishery to higher discounted profits with higher long-term SSB for all species. We calculate that the losses due to the use of the Fmsy single-species (hake) target in this mixed fishery account for 11.4% of total discounted profits.
Resumo:
The aim of this thesis is to narrow the gap between two different control techniques: the continuous control and the discrete event control techniques DES. This gap can be reduced by the study of Hybrid systems, and by interpreting as Hybrid systems the majority of large-scale systems. In particular, when looking deeply into a process, it is often possible to identify interaction between discrete and continuous signals. Hybrid systems are systems that have both continuous, and discrete signals. Continuous signals are generally supposed continuous and differentiable in time, since discrete signals are neither continuous nor differentiable in time due to their abrupt changes in time. Continuous signals often represent the measure of natural physical magnitudes such as temperature, pressure etc. The discrete signals are normally artificial signals, operated by human artefacts as current, voltage, light etc. Typical processes modelled as Hybrid systems are production systems, chemical process, or continuos production when time and continuous measures interacts with the transport, and stock inventory system. Complex systems as manufacturing lines are hybrid in a global sense. They can be decomposed into several subsystems, and their links. Another motivation for the study of Hybrid systems is the tools developed by other research domains. These tools benefit from the use of temporal logic for the analysis of several properties of Hybrid systems model, and use it to design systems and controllers, which satisfies physical or imposed restrictions. This thesis is focused in particular types of systems with discrete and continuous signals in interaction. That can be modelled hard non-linealities, such as hysteresis, jumps in the state, limit cycles, etc. and their possible non-deterministic future behaviour expressed by an interpretable model description. The Hybrid systems treated in this work are systems with several discrete states, always less than thirty states (it can arrive to NP hard problem), and continuous dynamics evolving with expression: with Ki ¡ Rn constant vectors or matrices for X components vector. In several states the continuous evolution can be several of them Ki = 0. In this formulation, the mathematics can express Time invariant linear system. By the use of this expression for a local part, the combination of several local linear models is possible to represent non-linear systems. And with the interaction with discrete events of the system the model can compose non-linear Hybrid systems. Especially multistage processes with high continuous dynamics are well represented by the proposed methodology. Sate vectors with more than two components, as third order models or higher is well approximated by the proposed approximation. Flexible belt transmission, chemical reactions with initial start-up and mobile robots with important friction are several physical systems, which profits from the benefits of proposed methodology (accuracy). The motivation of this thesis is to obtain a solution that can control and drive the Hybrid systems from the origin or starting point to the goal. How to obtain this solution, and which is the best solution in terms of one cost function subject to the physical restrictions and control actions is analysed. Hybrid systems that have several possible states, different ways to drive the system to the goal and different continuous control signals are problems that motivate this research. The requirements of the system on which we work is: a model that can represent the behaviour of the non-linear systems, and that possibilities the prediction of possible future behaviour for the model, in order to apply an supervisor which decides the optimal and secure action to drive the system toward the goal. Specific problems can be determined by the use of this kind of hybrid models are: - The unity of order. - Control the system along a reachable path. - Control the system in a safe path. - Optimise the cost function. - Modularity of control The proposed model solves the specified problems in the switching models problem, the initial condition calculus and the unity of the order models. Continuous and discrete phenomena are represented in Linear hybrid models, defined with defined eighth-tuple parameters to model different types of hybrid phenomena. Applying a transformation over the state vector : for LTI system we obtain from a two-dimensional SS a single parameter, alpha, which still maintains the dynamical information. Combining this parameter with the system output, a complete description of the system is obtained in a form of a graph in polar representation. Using Tagaki-Sugeno type III is a fuzzy model which include linear time invariant LTI models for each local model, the fuzzyfication of different LTI local model gives as a result a non-linear time invariant model. In our case the output and the alpha measure govern the membership function. Hybrid systems control is a huge task, the processes need to be guided from the Starting point to the desired End point, passing a through of different specific states and points in the trajectory. The system can be structured in different levels of abstraction and the control in three layers for the Hybrid systems from planning the process to produce the actions, these are the planning, the process and control layer. In this case the algorithms will be applied to robotics ¡V a domain where improvements are well accepted ¡V it is expected to find a simple repetitive processes for which the extra effort in complexity can be compensated by some cost reductions. It may be also interesting to implement some control optimisation to processes such as fuel injection, DC-DC converters etc. In order to apply the RW theory of discrete event systems on a Hybrid system, we must abstract the continuous signals and to project the events generated for these signals, to obtain new sets of observable and controllable events. Ramadge & Wonham¡¦s theory along with the TCT software give a Controllable Sublanguage of the legal language generated for a Discrete Event System (DES). Continuous abstraction transforms predicates over continuous variables into controllable or uncontrollable events, and modifies the set of uncontrollable, controllable observable and unobservable events. Continuous signals produce into the system virtual events, when this crosses the bound limits. If this event is deterministic, they can be projected. It is necessary to determine the controllability of this event, in order to assign this to the corresponding set, , controllable, uncontrollable, observable and unobservable set of events. Find optimal trajectories in order to minimise some cost function is the goal of the modelling procedure. Mathematical model for the system allows the user to apply mathematical techniques over this expression. These possibilities are, to minimise a specific cost function, to obtain optimal controllers and to approximate a specific trajectory. The combination of the Dynamic Programming with Bellman Principle of optimality, give us the procedure to solve the minimum time trajectory for Hybrid systems. The problem is greater when there exists interaction between adjacent states. In Hybrid systems the problem is to determine the partial set points to be applied at the local models. Optimal controller can be implemented in each local model in order to assure the minimisation of the local costs. The solution of this problem needs to give us the trajectory to follow the system. Trajectory marked by a set of set points to force the system to passing over them. Several ways are possible to drive the system from the Starting point Xi to the End point Xf. Different ways are interesting in: dynamic sense, minimum states, approximation at set points, etc. These ways need to be safe and viable and RchW. And only one of them must to be applied, normally the best, which minimises the proposed cost function. A Reachable Way, this means the controllable way and safe, will be evaluated in order to obtain which one minimises the cost function. Contribution of this work is a complete framework to work with the majority Hybrid systems, the procedures to model, control and supervise are defined and explained and its use is demonstrated. Also explained is the procedure to model the systems to be analysed for automatic verification. Great improvements were obtained by using this methodology in comparison to using other piecewise linear approximations. It is demonstrated in particular cases this methodology can provide best approximation. The most important contribution of this work, is the Alpha approximation for non-linear systems with high dynamics While this kind of process is not typical, but in this case the Alpha approximation is the best linear approximation to use, and give a compact representation.
Resumo:
This paper tackles the problem of computing smooth, optimal trajectories on the Euclidean group of motions SE(3). The problem is formulated as an optimal control problem where the cost function to be minimized is equal to the integral of the classical curvature squared. This problem is analogous to the elastic problem from differential geometry and thus the resulting rigid body motions will trace elastic curves. An application of the Maximum Principle to this optimal control problem shifts the emphasis to the language of symplectic geometry and to the associated Hamiltonian formalism. This results in a system of first order differential equations that yield coordinate free necessary conditions for optimality for these curves. From these necessary conditions we identify an integrable case and these particular set of curves are solved analytically. These analytic solutions provide interpolating curves between an initial given position and orientation and a desired position and orientation that would be useful in motion planning for systems such as robotic manipulators and autonomous-oriented vehicles.
Resumo:
We examine differential equations where nonlinearity is a result of the advection part of the total derivative or the use of quadratic algebraic constraints between state variables (such as the ideal gas law). We show that these types of nonlinearity can be accounted for in the tangent linear model by a suitable choice of the linearization trajectory. Using this optimal linearization trajectory, we show that the tangent linear model can be used to reproduce the exact nonlinear error growth of perturbations for more than 200 days in a quasi-geostrophic model and more than (the equivalent of) 150 days in the Lorenz 96 model. We introduce an iterative method, purely based on tangent linear integrations, that converges to this optimal linearization trajectory. The main conclusion from this article is that this iterative method can be used to account for nonlinearity in estimation problems without using the nonlinear model. We demonstrate this by performing forecast sensitivity experiments in the Lorenz 96 model and show that we are able to estimate analysis increments that improve the two-day forecast using only four backward integrations with the tangent linear model. Copyright © 2011 Royal Meteorological Society
Resumo:
Experimental methods based on single particle tracking (SPT) are being increasingly employed in the physical and biological sciences, where nanoscale objects are visualized with high temporal and spatial resolution. SPT can probe interactions between a particle and its environment but the price to be paid is the absence of ensemble averaging and a consequent lack of statistics. Here we address the benchmark question of how to accurately extract the diffusion constant of one single Brownian trajectory. We analyze a class of estimators based on weighted functionals of the square displacement. For a certain choice of the weight function these functionals provide the true ensemble averaged diffusion coefficient, with a precision that increases with the trajectory resolution.
Resumo:
This paper presents advanced optimization techniques for Mission Path Planning (MPP) of a UAS fitted with a spore trap to detect and monitor spores and plant pathogens. The UAV MPP aims to optimise the mission path planning search and monitoring of spores and plant pathogens that may allow the agricultural sector to be more competitive and more reliable. The UAV will be fitted with an air sampling or spore trap to detect and monitor spores and plant pathogens in remote areas not accessible to current stationary monitor methods. The optimal paths are computed using a Multi-Objective Evolutionary Algorithms (MOEAs). Two types of multi-objective optimisers are compared; the MOEA Non-dominated Sorting Genetic Algorithms II (NSGA-II) and Hybrid Game are implemented to produce a set of optimal collision-free trajectories in three-dimensional environment. The trajectories on a three-dimension terrain, which are generated off-line, are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different position with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of coupling a Hybrid-Game strategy to a MOEA for MPP tasks. The reduction of numerical cost is an important point as the faster the algorithm converges the better the algorithms is for an off-line design and for future on-line decisions of the UAV.
Resumo:
In this paper we consider the implementation of time and energy efficient trajectories onto a test-bed autonomous underwater vehicle. The trajectories are losely connected to the results of the application of the maximum principle to the controlled mechanical system. We use a numerical algorithm to compute efficient trajectories designed using geometric control theory to optimize a given cost function. Experimental results are shown for the time minimization problem.